Интерфейс. Браузеры. Камеры. Программы. Образование. Социальные сети

Тригонометрические функции числового аргумента. Тригонометрические функции числового и углового аргументов. IV этап. Внезапная остановка – авария

Урок и презентация на тему: "Тригонометрическая функция числового аргумента, определение, тождества"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Определение числового аргумента.
2. Основные формулы.
3. Тригонометрические тождества.
4. Примеры и задачи для самостоятельного решения.

Определение тригонометрической функции числового аргумента

Ребята, мы знаем что такое синус, косинус, тангенс и котангенс.
Давайте посмотрим, можно ли через значения одних тригонометрических функций найти значения других тригонометрических функций?
Определим тригонометрическую функцию числового элемента, как: $y= sin(t)$, $y= cos(t)$, $y= tg(t)$, $y= ctg(t)$.

Вспомним основные формулы:
$sin^2(t)+cos^2(t)=1$. Кстати, как называется эта формула?

$tg(t)=\frac{sin(t)}{cos(t)}$, при $t≠\frac{π}{2}+πk$.
$ctg(t)=\frac{cos(t)}{sin(t)}$, при $t≠πk$.

Давайте выведем новые формулы.

Тригонометрические тождества

Мы знаем основное тригонометрическое тождество: $sin^2(t)+cos^2(t)=1$.
Ребята, давайте обе части тождества разделим на $cos^2(t)$.
Получим: $\frac{sin^2(t)}{cos^2(t)}+\frac{cos^2(t)}{cos^2(t)}=\frac{1}{cos^2(t)}$.
Преобразуем: $(\frac{sin(t)}{cos(t)})^2+1=\frac{1}{cos^2(t)}.$
У нас получается тождество: $tg^2(t)+1=\frac{1}{cos^2(t)}$, при $t≠\frac{π}{2}+πk$.

Теперь разделим обе части тождества на $sin^2(t)$.
Получим: $\frac{sin^2(t)}{sin^2(t)}+\frac{cos^2(t)}{sin^2(t)}=\frac{1}{sin^2(t)}$.
Преобразуем: $1+(\frac{cos(t)}{sin(t)})^2=\frac{1}{sin^2(t)}.$
У нас получается новое тождество, которое стоит запомнить:
$ctg^2(t)+1=\frac{1}{sin^2(t)}$, при $t≠πk$.

Нам удалось получить две новых формулы. Запомните их.
Эти формулы используются, если по какому-то известному значению тригонометрической функции требуется вычислить значение другой функции.

Решение примеров на тригонометрические функции числового аргумента

Пример 1.

$cos(t) =\frac{5}{7}$, найти $sin(t)$; $tg(t)$; $ctg(t)$ для всех t.

Решение:

$sin^2(t)+cos^2(t)=1$.
Тогда $sin^2(t)=1-cos^2(t)$.
$sin^2(t)=1-(\frac{5}{7})^2=1-\frac{25}{49}=\frac{49-25}{49}=\frac{24}{49}$.
$sin(t)=±\frac{\sqrt{24}}{7}=±\frac{2\sqrt{6}}{7}$.
$tg(t)=±\sqrt{\frac{1}{cos^2(t)}-1}=±\sqrt{\frac{1}{\frac{25}{49}}-1}=±\sqrt{\frac{49}{25}-1}=±\sqrt{\frac{24}{25}}=±\frac{\sqrt{24}}{5}$.
$ctg(t)=±\sqrt{\frac{1}{sin^2(t)}-1}=±\sqrt{\frac{1}{\frac{24}{49}}-1}=±\sqrt{\frac{49}{24}-1}=±\sqrt{\frac{25}{24}}=±\frac{5}{\sqrt{24}}$.

Пример 2.

$tg(t) = \frac{5}{12}$, найти $sin(t)$; $cos(t)$; $ctg(t)$, при всех $0

Решение:
$tg^2(t)+1=\frac{1}{cos^2(t)}$.
Тогда $\frac{1}{cos^2(t)}=1+\frac{25}{144}=\frac{169}{144}$.
Получаем, что $cos^2(t)=\frac{144}{169}$.
Тогда $cos^2(t)=±\frac{12}{13}$, но $0 Косинус в первой четверти положительный. Тогда $cos(t)=\frac{12}{13}$.
Получаем: $sin(t)=tg(t)*cos(t)=\frac{5}{12}*\frac{12}{13}=\frac{5}{13}$.
$ctg(t)=\frac{1}{tg(t)}=\frac{12}{5}$.

Задачи для самостоятельного решения

1. $tg(t) = -\frac{3}{4}$, найти $sin(t)$; $cos(t)$; $ctg(t)$, при всех $\frac{π}{2} 2. $сtg(t) =\frac{3}{4}$, найти $sin(t)$; $cos(t)$; $tg(t)$, при всех $π 3. $sin(t) = \frac{5}{7}$, найти $cos(t)$; $tg(t)$; $ctg(t)$ для всех $t$.
4. $cos(t) = \frac{12}{13}$, найти $sin(t)$; $tg(t)$; $ctg(t)$ для всех $t$.

Основным тригонометрическим тождеством в русскоязычных учебниках математики называют соотношение sin 2 ⁡ α + cos 2 ⁡ α = 1

Мы рассмотрели самые основные тригонометрические функции (не обольщайтесь помимо синуса, косинуса, тангенса и котангенса существует еще целое множество других функций, но о них позже), а пока рассмотрим некоторые основные свойства уже изученных функций.

Тригонометрические функции числового аргумента

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin(t) . Правда, правило соответствия довольно сложное и заключается в следующем.

Чтобы по числу t найти значение sin(t) , нужно:

  1. расположить числовую окружность на координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);
  2. на окружности найти точку, соответствующую числу t ;
  3. найти ординату этой точки.
  4. эта ордината и есть искомое sin(t) .

Фактически речь идет о функции s = sin(t) , где t - любое действительное число. Мы умеем вычислять некоторые значения этой функции (например, sin(0) = 0 , \(sin \frac {\pi}{6} = \frac{1}{2} \) и т.д.), знаем некоторые ее свойства.

Точно так же мы можем считать, что уже получили некоторые представления еще о трех функциях: s = cos(t) s = tg(t) s = ctg(t) Все эти функции называют тригонометрическими функциями числового аргумента t .

Связь тригонометрических функций

Как вы, надеюсь, догадываетесь все тригонометрические функции связаны между собой и даже не зная значение одной, ее можно найти через другое.

К примеру, самая главная формула, из всей тригонометрии - это основное тригонометрическое тождество :

\[ sin^{2} t + cos^{2} t = 1 \]

Как видите, зная значение синуса можно найти значение косинуса, и также наоборот. Также очень распространенные формулы, связывающие синус и косинус с тангенсом и котангенсом:

\[ \boxed {\tan\; t=\frac{\sin\; t}{\cos\; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {\cot\; t=\frac{\cos\; }{\sin\; }, \qquad t \neq \pi k} \]

Из двух последних формул можно вывести еще одно тригометрическое тождество, связывающее на этот раз тангенс и котангенс:

\[ \boxed {\tan \; t \cdot \cot \; t = 1, \qquad t \neq \frac{\pi k}{2}} \]

Теперь давайте посмотрим, как эти формулы действуют на практике.

ПРИМЕР 1. Упростить выражение: а) \(1+ \tan^2 \; t \), б) \(1+ \cot^2 \; t \)

а) В первую очередь распишем тангенс, сохраняя квадрат:

\[ 1+ \tan^2 \; t = 1 + \frac{\sin^2 \; t}{\cos^2 \; t} \]

\[ 1 + \frac{\sin^2 \; t}{\cos^2 \; t}= \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} \]

Теперь введем все под общий знаменатель, и получаем:

\[ \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} = \frac{\cos^2 \; t + \sin^2 \; t}{\cos^2 \; t} \]

Ну и наконец, как мы видим числитель можно по основному тригонометрическому тождеству сократить до единицы, в итоге получаем: \[ 1+ \tan^2 \; = \frac{1}{\cos^2 \; t} \]

б) С котангенсом выполняем все те же самые действия, только в знаменателе будет уже не косинус, а синус и ответ получится таким:

\[ 1+ \cot^2 \; = \frac{1}{\sin^2 \; t} \]

Выполнив данное задание мы вывели еще две очень важные формулы, связывающие наши функции, которые тоже нужно знать, как свои пять пальцев:

\[ \boxed {1+ \tan^2 \; = \frac{1}{\cos^2 \; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {1+ \cot^2 \; = \frac{1}{\sin^2 \; t}, \qquad t \neq \pi k} \]

Все представленные в рамках формулы вы должны знать наизусть, иначе дальнейшее изучение тригонометрии без них просто невозможно. В дальнейшем будут еще формулы и их будет очень много и уверяю все их вы точно будете запоминать долго, а может и не запомните, но эти шесть штук должны знать ВСЕ!

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Тригонометрические функции числового аргумента.

Тригонометрические функции числового аргумента t – это функции вида y = cos t,
y = sin t, y = tg t, y = ctg t.

С помощью этих формул через известное значение одной тригонометрической функции можно найти неизвестные значения других тригонометрических функций.

Пояснения .

1) Возьмем формулу cos 2 t + sin 2 t = 1 и выведем с ее помощью новую формулу.

Для этого разделим обе части формулы на cos 2 t (при t ≠ 0, то есть t ≠ π/2 + πk ). Итак:

cos 2 t sin 2 t 1
--- + --- = ---
cos 2 t cos 2 t cos 2 t

Первое слагаемое равно 1. Мы знаем, что отношение синуса к конисусу – это тангенс, значит, второе слагаемое равно tg 2 t. В результате мы получаем новую (и уже известную вам) формулу:

2) Теперь разделим cos 2 t + sin 2 t = 1 на sin 2 t (при t ≠ πk ):

cos 2 t sin 2 t 1
--- + --- = ---, где t ≠ πk + πk , k – целое число
sin 2 t sin 2 t sin 2 t

Отношение косинуса к синусу – это котангенс. Значит:


Зная элементарные основы математики и выучив основные формулы тригонометрии, вы легко сможете самостоятельно выводить большинство остальных тригонометрических тождеств. И это даже лучше, чем просто зазубривать их: выученное наизусть быстро забывается, а понятое запоминается надолго, если не навсегда. К примеру, необязательно зазубривать, чему равна сумма единицы и квадрата тангенса. Забыли – можно легко вспомнить, если вы знаете самую простую вещь: тангенс – это отношение синуса к косинусу. Примените вдобавок простое правило сложения дробей с разными знаменателями – и получите результат:

sin 2 t 1 sin 2 t cos 2 t + sin 2 t 1
1 + tg 2 t = 1 + --- = - + --- = ------ = ---
cos 2 t 1 cos 2 t cos 2 t cos 2 t

Точно так же легко можно найти сумму единицы и квадрата котангенса, как и многие другие тождества.

Тригонометрические функции углового аргумента.

В функциях у = cos t , у = sin t , у = tg t , у = ctg t переменная t может быть не только числовым аргументом. Ее можно считать и мерой угла – то есть угловым аргументом.

С помощью числовой окружности и системы координат можно легко найти синус, косинус, тангенс, котангенс любого угла. Для этого должны быть соблюдены два важных условия:
1) вершиной угла должен быть центр окружности, который одновременно является центром оси координат;

2) одной из сторон угла должен быть положительный луч оси x .

В этом случае ордината точки, в которой пересекаются окружность и вторая сторона угла, является синусом этого угла, а абсцисса этой точки – косинусом данного угла.

Пояснение . Нарисуем угол, одна сторона которого – положительный луч оси x , а вторая сторона выходит из начала оси координат (и из центра окружности) под углом 30º (см.рисунок). Тогда точка пересечения второй стороны с окружностью соответствует π/6. Нам известны ордината и абсцисса этой точки. Они же являются косинусом и синусом нашего угла:

√3 1
--; --
2 2

А зная синус и косинус угла, вы уже легко сможете найти его тангенс и котангенс.

Таким образом, числовая окружность, расположенная в системе координат, является удобным способом найти синус, косинус, тангенс или котангенс угла.

Но есть более простой способ. Можно и не рисовать окружность и систему координат. Можно воспользоваться простыми и удобными формулами:

Пример : найти синус и косинус угла, равного 60º.

Решение :

π · 60 π √3
sin 60º = sin --- = sin -- = --
180 3 2

π 1
cos 60º = cos -- = -
3 2

Пояснение : мы выяснили, что синус и косинус угла 60º соответствуют значениям точки окружности π/3. Далее просто находим в таблице значения этой точки – и таким образом решаем наш пример. Таблица синусов и косинусов основных точек числовой окружности – в предыдущем разделе и на странице «Таблицы».

Загрузка...