Интерфейс. Браузеры. Камеры. Программы. Образование. Социальные сети

Термодинамическая шкала. Термодинамическая температурная шкала. Единицы и шкала измерения температуры

Температура Т была введена вначале эмпирическим путем с помощью газового термометра исходя из зависимости между давлением и температурой идеального газа. Но уравнение для идеального газа справедливо в ограниченном интервале значений давлений и температур.

Из выражения для КПД машины, работающей по циклу Карно, следует, что

Вообще говоря, это соотношение позволяет опытным путём ввести новую абсолютную шкалу температур, которая не зависит от свойств рабочего тела и такую, что КПД для цикла Карно будет зависеть только от новых температур, и будет выполняться равенство

Ф (Т Х, Т Н ).

Рассмотрим цикл Карно 1-2-5-6-1 с температурами нагревателя Т 1 и холодильника Т 3 , состоящий из двух «подциклов» 1-2-3-4-1 и 4-3-5-6-4 с промежуточной температурой Т 2 . Цикл 1-2-5-6-1 можно интерпретировать как термодинамический цикл объединённой тепловой машины, состоящей из двух тепловых машин, работающих по круговым процессам 1-2-3-4-1 и 4-3-5-6-4.

Для всех трех циклов можно записать

, Q¢ 3 /Q¢ 2 = Ф (Т 3 ,Т 2 ), .

Следует заметить, что в круговом процессе 1-2-3-4-1 теплота Q¢ 2 , отводимая холодильником первой тепловой машины, равна теплоте, подводимой к рабочему телу второй машины, которой соответствует круговой процесс 4-3-5-6-4, т.е. холодильник первой машины выступает в качестве нагревателя второй. А суммарная работа двух тепловых машин равна работе объединённой тепловой машины, которой соответствует круговой процесс 1-2-5-6-1.

Так как Q¢ 3 /Q 1 = (Q¢ 3 /Q¢ 2) × (Q¢ 2 /Q 1) , то при этом должно выполняться равенство

Но левая часть не зависит от Т 2 . Это возможно в случае, когда , и .

Величина представляет собой термодинамическую температуру и при сопоставлении её с идеально-газовой шкалой может быть записана в виде = Т, где Т – температура, заданная шкалой Кельвина. Следовательно, шкала температур, построенная с использованием идеально-газового термометра, и термодинамическая шкала температур совпадают.

Таким образом, цикл Карно позволяет построить термодинамическую шкалу температур и предложить термодинамический термометр . Принцип действия такого термометра заключается в организации цикла Карно между телом с неизвестной температурой Т X и телом с известной температурой Т (например, с тающим льдом или кипящей водой) и измерении соответствующего количества теплоты Q X и Q. Применение формулы

Температура

Температура является количественной мерой «нагретости» тела. Более нагретым является то, «нагретость» которого уменьшается при длительном контакте с другим телом, принимаемым в этом случае, по определению, за менее нагретое. Степень «нагретости» тела измеряется по характеристикам материальных тел, зависящих от «нагретости». Измерение «нагретости» сводится к измерению некоторой величины тела, которая изменяется с изменением «нагретости» тела. Тело, выбираемое для измерения «нагретости», называется термометрическим, а величина, посредством которой измеряется «нагретость», называется термометрической величиной. Наиболее широко известными являются «нагретость», при которой кипит вода при атмосферном давлении, и «нагретость», при которой она замерзает. Эти реперные точки называются точкой кипения воды и точкой замерзания. Температурой называется числовое значение величины, с помощью которой характеризуется «нагретость» тела. Температура выражается в градусах. Пусть точке кипения присваивается температура t2, а точке замерзания - температура t1, тогда градусом температуры называется величина

где l2 и l1 - термометрические величины термометрического тела в точках кипения и замерзания воды, соответственно.

Эмпирические шкалы температур

Температурой термометрического тела называется число, которое определяется по формуле

где lt - термометрическая величина при измеряемой «нагретости». Наиболее известными эмпирическими шкалами температур являются Цельсия и Фаренгейта, которые отличаются значениями температур, приписанных реперным точкам. В шкале Цельсия t2=100 и t1=0, а в шкале Фаренгейта t2=212 и t1=32. Следовательно, одна и та же «нагретость» характеризуется в этих шкалах разными температурами:

Виды термометров Значение температуры для одной и той же шкалы температур зависит от термометрического тела. Поэтому, термометры, использующие различные термометрические тела, показывают различную температуру. Совпадение показаний термометров может быть только в реперных точках, если они одинаковы для данных термометров. Термометры бывают различными: газовыми, жидкостными, твердотельными. Во всех них используется то, что термометрическое тело (газ, жидкость, твердое тело) меняют свои физические характеристики (объем, длину, проводимость, и проч.) в зависимости от температуры.

Международная практическая шкала Международная практическая шкала температур образована таким образом, чтобы с ее помощью можно было просто калибровать научные и технические приборы и в то же время воспроизводить с технически максимально возможной точностью термодинамическую шкалу температур. Единицами температуры являются кельвин и градус Цельсия в зависимости от начала отсчета температур. Шкала температур постоянно уточняется в соответствии с результатами научных исследований и достижениями измерительной техники. Между реперными точками температурная шкала устанавливается с помощью интерполяционных формул, по которым температура вычисляется по показаниям термометров, принятых за стандартные. Международная практическая шкала температур чрезвычайно точно согласуется с термодинамической шкалой температур в реперных точках и достаточно точно во всех остальных точках.

Термодинамическая шкала

На основании 2-й теоремы Карно можно установить абсолютную термодинамическую шкалу температур, не зависящую от термометрического тела. Рассмотрим систему изотерм и адиабат. Фигуры 1, 2, 3, заключенные между двумя соседними изотермами и двумя адиабатами, являются циклами Карно.

Из выражения для КПД цикла Карно можно записать последовательность соотношений

Т.е. если задать какую-нибудь реперную точку (например, температуру тройной точки воды 273,16 К), то проведя последовательность прямых обратимых циклов Карно можно вычислить произвольную температуру (в произвольном процессе), если измерить соответствующее величины Q. Такое определение температуры не зависит от термометрического тела. Оно впервые было дано Кельвином. В честь которого была названа единица абсолютной термодинамической температуры.

Отрицательные абсолютные температуры Понятно, что отрицательная абсолютная термодинамическая температура не имеет физического смысла. Тем не менее, в квантовых системах понятие отрицательной абсолютной температуры имеет вполне определенный смысл: это мера способа заполнения квантовых уровней энергии частицами. Если частицы заполняют сначала нижние энергетические уровни, так, что на более высоком уровне частиц меньше, то температура положительна и совпадает по значению с термодинамической. Если же создается инверсность населенностей, т.е. на более низко расположенном уровне частиц меньше, чем на более высоком, то температуре приписываются отрицательные значения. Тем не менее, такие значения все же не имеют физического смысла.

Молекулярно-кинетическое определение

Измерение температуры

Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры.

На практике для измерения температуры используют

Единицы и шкала измерения температуры

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала температур Кельвина

Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры - кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры - абсолютный ноль , то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что приблизительно равно −273.15 °C.

Шкала температур Кельвина - температурная шкала, в которой начало отсчёта ведётся от абсолютного нуля .

Используемые в быту температурные шкалы - как Цельсия , так и Фаренгейта (используемая, в основном, в США), - не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина , а другая - абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что кельвин равен градусу Цельсия, а градус Ранкина - градусу Фаренгейта.

Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K. Число градусов Цельсия и кельвинов между точками замерзания и кипения воды одинаково и равно 100. Поэтому градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15.

Шкала Цельсия

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), 1 °F = 9/5 °С + 32. Предложена Г. Фаренгейтом в 1724.

Энергия теплового движения при абсолютном нуле

Когда материя охлаждается, многие формы тепловой энергии и связанные с ней эффекты одновременно уменьшаются по величине. Вещество переходит от менее упорядоченного состояния к более упорядоченному. Газ превращается в жидкость и затем кристаллизуется в твёрдое тело (гелий и при абсолютном нуле остается в жидком состоянии при атмосферном давлении). Движение атомов и молекул замедляется, их кинетическая энергия уменьшается. Сопротивление большинства металлов падает из-за уменьшения рассеяния электронов на колеблющихся с меньшей амплитудой атомах кристаллической решётки. Таким образом даже при абсолютном нуле электроны проводимости движутся между атомами со скоростью Ферми порядка 1x10 6 м/с.

Температура, при которой частицы вещества имеют минимальное количество движения, сохраняющееся только благодаря квантовомеханическому движению, - это температура абсолютного нуля (Т = 0К).

Температуры абсолютного нуля достичь невозможно. Наиболее низкая температура (450±80)x10 -12 К конденсата Бозе-Эйнштейна атомов натрия была получена в 2003 г. исследователями из МТИ . При этом пик теплового излучения находится в области длин волн порядка 6400 км, то есть примерно радиуса Земли.

Температура с термодинамической точки зрения

Существует множество различных шкал температур. Когда-то температура определялась очень произвольно. Мерой температуры служили метки, нанесённые на равных расстояниях на стенах трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру и обнаружили, что градусные расстояния не одинаковы. В термодинамике дается определение температуры, не зависящее от каких-либо частных свойств вещества.

Введем функцию f (T ) , которая не зависит от свойств вещества. Из термодинамики следует, что если какая-то тепловая машина, поглощая количество теплоты Q 1 при T 1 выделяет тепло Q s при температуре в один градус , а другая машина, поглотив тепло Q 2 при T 2 , выделяет то же самое тепло Q s при температуре в один градус, то машина, поглощающая Q 1 при T 1 должна при температуре T 2 выделять тепло Q 2 .

Конечно, между теплом Q и температурой T существует зависимость и тепло Q 1 должно быть пропорционально Q s . Таким образом, каждому количеству тепла Q s , выделенного при температуре в один градус, соответствует количество тепла, поглощённого машиной при температуре T , равное Q s , умноженному на некоторую возрастающую функцию f температуры:

Q = Q s f (T )

Поскольку найденная функция возрастает с температурой, то можно считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Это означает, что можно найти температуру тела, определив количество тепла, которое поглощается тепловой машиной, работающей в интервале между температурой тела и температурой в один градус. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Таким образом, для обратимой тепловой машины выполняется равенство:

Для системы, в которой энтропия S может быть функцией S (E ) её энергии E , термодинамическая температура определяется как:

Температура и излучение

При повышении температуры растёт энергия, излучаемая нагретым телом. Энергия излучения абсолютно чёрного тела описывается законом Стефана - Больцмана

Шкала Реомюра

Предложена в году Р. А. Реомюром , который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25° C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции , на родине автора.

Переходы из разных шкал

Сравнение температурных шкал

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ранкин Делиль Ньютон Реомюр Рёмер
Абсолютный ноль 0 −273.15 −459.67 0 559.725 −90.14 −218.52 −135.90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) 255.37 −17.78 0 459.67 176.67 −5.87 −14.22 −1.83
Температура замерзания воды (Нормальные условия) 273.15 0 32 491.67 150 0 0 7.5
Средняя температура человеческого тела ¹ 310.0 36.6 98.2 557.9 94.5 12.21 29.6 26.925
Температура кипения воды (Нормальные условия) 373.15 100 212 671.67 0 33 80 60
Плавление титана 1941 1668 3034 3494 −2352 550 1334 883
Поверхность Солнца 5800 5526 9980 10440 −8140 1823 4421 2909

¹ Нормальная средняя температура человеческого тела - 36.6 ° C ±0.7 ° C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 ° C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная

Которая не зависит от особенностей термометрического вещества и устройства термометра.

Поэтому прежде чем перейти непосредственно к рассмотрению термодинамической шкалы температур, сформулируем теорему, которая называется теоремой Карно:

Теорема Карно

Все обратимые машины, работающие по циклу Карно, имеют одинаковый коэффициент полезного действия.

Здесь надо подчеркнуть, что речь идет не о том, что все обратимые машины имеют равный КПД, а о том, что все обратимые машины, работающие по циклу Карно, имеют равный КПД при одних и тех же заданных температурах нагревателя и холодильника. Мы эту теорему доказывать не будем, так как доказательство довольно простое и встречается во всех учебниках по термодинамике. Кроме того, в предыдущих главах была получена формула для расчета КПД цикла Карно, при выводе которой не делалось никаких ограничений по веществу рабочего тела и по конструкции теплового двигателя, при этом мы получили, что КПД цикла Карно зависит только от температур нагревателя и холодильника.

\[\eta =1-\frac{Q_{ch}}{Q_n}\ \left(1\right),\]

где $Q_n$ - количество теплоты, полученное рабочим телом от нагревателя, $Q_{ch}$- количество теплоты, отданное рабочим телом холодильнику. Так как $\eta $ имеет одинаковые значения для всех тепловых машин, работающих по обратимому циклу Карно с температурой нагревателя и температурой холодильника. Обозначим временно величины этих температур ${\theta }_1\ и\ {\theta }_2,$ то для отношение $\frac{Q_{ch}}{Q_n}$ можно записать:

\[\frac{Q_{ch}}{Q_n}=f\left({\theta }_1\ ,\ {\theta }_2\right)\left(2\right),\]

где $f\left({\theta }_1\ ,\ {\theta }_2\right)$ - функция температур холодильника и нагревателя, универсальная для всех циклов Карно. Покажем, что $f\left({\theta }_1\ ,\ {\theta }_2\right)$ можно представить в виде:

где $\varphi \left(\theta \right)$ - универсальная функция от температуры.

Отношение двух термодинамических температур

Рассмотрим две обратимые машины (рис.1). Холодильник одной машины -- нагреватель для другой. Допустим, что вторая машина отбирает от нагревателя с температурой ${\theta }_2$- столько тепла, сколько отдает ему первая машина (${Qch}_2={Qn}_2$). Исходя из (2), для каждой машины запишем:

\[\frac{Q_{ch2}}{Q_{n1}}=f\left({\theta }_1\ ,\ {\theta }_2\right)\left(4\right),\] \[\frac{Q_{ch3}}{Q_{ch2}}=f\left({\theta }_2\ ,\ {\theta }_3\right)\left(5\right).\]

Если рассмотреть машину на рис.1 как единую с тепловым резервуаром температуры (${\theta }_1$) и холодильником с температурой (${\theta }_3$), то получим:

\[\frac{Q_{ch3}}{Q_{n1}}=f\left({\theta }_1\ ,\ {\theta }_3\right)\left(6\right).\]

Разделим (6) на (4), имеем:

\[\frac{Q_{ch3}}{Q_{ch2}}=\frac{f\left({\theta }_1\ ,\ {\theta }_3\right)}{f\left({\theta }_1\ ,\ {\theta }_2\right)}=\frac{Q_{n2}}{Q_{ch2}}\left(7\right).\]

Сравниваем (7) и (5), получаем:

Уравнение (8) связывает температуры, связывает все температуры${\ \theta }_1\ ,\ {\theta }_2,\ {\theta }_3.$ Решим, что ${\ \theta }_1$ постоянна, получим, что функция $f\left({\theta }_1\ ,\ \theta \right)$ -- функция одной переменной $\theta $. Обозначим эту функцию $\varphi (\theta)$, тогда уравнение (8) примет вид:

Что совпадает с тем, что мы хотели доказать, то есть с выражением (3).

Функция $\varphi \left(\theta \ \right)$ зависит только от температуры. Поэтому ее значение можно использовать для характеристики температуры соответствующего тела, то есть полагать температуру равной $\varphi $, где $\varphi =\varphi \left(\theta \ \right).$ В таком случае уравнение (4) примет вид:

\[\frac{Q_{ch2}}{Q_{n1}}=\frac{{\varphi }_2}{{\varphi }_1}\ \left(11\right).\]

Соотношение (11) ложится в основу термодинамической шкалы температур. Ее преимущество -- независимость от выбора рабочего тела в цикле Карно, которое используют для измерения температуры.

Величину $\varphi $ принимают за меру температуры тела и называют абсолютной термодинамической температурой. В примерах мы покажем, что она совпадает с используемой нами ранее с абсолютной температурой T по шкале идеального газового термометра. В выражении (11) мы видим отношение двух термодинамических температур. Чтобы определить температуру одного тела можно:

  • взять какие-либо две постоянные температурные точки (например, температуру плавления льда $T_i$ при нормальных условиях и температуру кипения воды ($T_k$)). Найти разность количества теплоты кипения $(Q_k)$ и плавления $(Q_i)$, допустим, что разность ${(Q}_k-Q_i)=100$ градусам, тогда температурный интервал делим на 100 равных частей, каждая часть кельвин. Решаем систему из двух уравнений:
  • \[\frac{T_k}{T_i}=\frac{Q_k}{Q_i},\ T_k-T_i=100\ (12)\]

    вычисляем температуры. Отношение теплот можно измерить или найти косвенным вычислением.

  • Второй метод: для сопоставления температур двух тел необходимо осуществить цикл Карно, в котором исследуемые тела использовать, как нагреватель и холодильник. Отношение, отданное теплоты к полученной теплоте -- есть отношение температур исследуемых тел.

Абсолютная термодинамическая температура не может быть отрицательной. Самая низкая температура, которую допускает второе начало термодинамики : T=0K. Абсолютная термодинамическая шкала температур тождественна с абсолютной шкалой.

Задание: Докажите тождественность термодинамической шкалы температур с абсолютной шкалой идеального газового термометра, используя цикл Карно. В качестве рабочего тела рассмотрите 1 моль идеального газа.

Найдем количество теплоты, которое получило рабочее тело. Поступление теплоты происходит на изотермическом участке 1-2.

Первый интеграл равен нулю, так как мы имеем дело с изотермическим процессом , а второй -- работе при $T_n=const$ (которая рассчитывалась в разделе изотермический процесс). На участке 3-4 система тепло отдает в холодильник при температуре $T_{ch}$. Запишем $Q_{ch}$:

Найдем отношение:

\[\frac{Q_{ch}}{Q_n}=\frac{RT_{ch}ln\frac{V_4}{V_3}}{RT_nln\frac{V_2}{V_1}}\left(1.3\right).\]

Выясним, как соотносятся отношения объемов. Для этого используем уравнения адиабат для соответствующих процессов в цикле Карно:

Соответственно выражение (1.3) будет иметь вид:

\[\frac{Q_{ch}}{Q_n}=\frac{T_{ch}}{T_n}\left(1.5\right).\]

Сравниваем уравнение (1.5) с выражением, которое было получено для отношения термодинамических температур (1.6):

\[\frac{Q_{ch}}{Q_n}=\frac{{\varphi }_2}{{\varphi }_1}\ \left(1.6\right).\]

Можно сделать вывод о том, что абсолютная термодинамическая шкала температур станет тождественной с соответствующей температурной шкалой идеального газового термометра, если в обоих случаях температуре основной реперной точки приписать одно и тоже значение. Так как на практике так и поступают, то считаем, что тождественность $\varphi =T$ доказана.

Пример 2

Задание: Докажите, что термодинамическая температура не может быть меньше нуля.

Пусть тело с температурой $T_{ch} \[\eta =1-\frac{T_{ch}}{T_n}\left(2.1\right),\]

если $T_{ch}0,\ $ получается $\eta >1$, что противоречит второму началу термодинамики, следовательно, неосуществимо.

Термодинамика имеет дело с термоди­намической системой - совокупностью макроскопических тел, которые взаимо­действуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинами­ческого метода - определение состояния термодинамической системы. Состояние системы задается термодинамическими параметрами (параметрами состояния) - совокупностью физических величин, ха­рактеризующих свойства термодинамиче­ской системы. Обычно в качестве парамет­ров состояния выбирают температуру, давление и удельный объем.

Температура - одно из основных по­нятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура - физическая величина, ха­рактеризующая состояние термодинами­ческого равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шка­лы - термодинамическую и Международ­ную практическую, градуированные соот­ветственно в Кельвинах (К) и в градусах Цельсия (°С).

В Международной практической шка­ле температура замерзания и кипения во­ды при давлении 1,013 10 5 Па соответ­ственно 0 и 100 °С (так называемые реперные точки).

Термодинамическая температурная шкала определяется по одной реперной точке, в качестве которой взята тройная точка воды (температура, при которой лед, вода и насыщенный пар при давле­нии 609 Па находятся в термодинамиче­ском равновесии). Температура этой точки по термодинамической шкале равна 273,16 К, (точно). Градус Цельсия равен Кельвину. В термодинамической шкале температура замерзания воды равна 273,15 К (при том же давлении, что и в Международной практической шкале), поэтому, по определению, термодинамиче­ская температура и температура по Меж­дународной практической шкале связаны соотношением T=273,15+t. Температура T=0 называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно.

Удельный объем v - это объем едини­цы массы. Когда тело однородно, т. е. его плотность =const, то v = V / m = 1/. Так как при постоянной массе удельный объем пропорционален общему объему, то мак­роскопические свойства однородного тела можно характеризовать объемом тела.

Параметры состояния системы могут изменяться. Любое изменение в термоди­намической системе, связанное с измене­нием хотя бы одного из ее термодинамиче­ских параметров, называется термодина­мическим процессом. Макроскопическая система находится в термодинамическом равновесии, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой систе­мы при этом не изменяются).

46. Взаимодействие атомов между собой

При рассмотрении реальных газов -

газов, свойства которых зависят от взаи­модействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они

проявляются на расстояниях 10 -9 м и быстро убывают при увеличении рассто­яния между молекулами. Такие силы на­зываются короткодействующими.

В XX в., по мере развития представле­ний о строении атома и квантовой механи­ки, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис. 88, а приведена качественная зависи­мость сил межмолекулярного взаимодей­ствия от расстояния r между молекулами, где F o и F п - соответственно силы оттал­кивания и притяжения, a F - их результи­рующая. Силы отталкивания считаются положительными, а силы взаимного при­тяжения - отрицательными.

На расстоянии r = r 0 результирующая сила F =0, т. е. силы притяжения и оттал­кивания уравновешивают друг друга. Та­ким образом, расстояние r 0 соответствует равновесному расстоянию между молеку­лами, на котором бы они находились в от­сутствие теплового движения. При r

преобладают силы отталкивания (F>0), при r>r 0 - силы притяжения (F<0). На расстояниях r>10 -9 м межмолекулярные силы взаимодействия практически отсут­ствуют (F 0).

Элементарная работа A силы F при увеличении расстояния между молекула­ми на dr совершается за счет уменьше­ния взаимной потенциальной энергии мо­лекул, т. е.

A=Fdr=-dП. (60.1)

Из анализа качественной зависимости по­тенциальной энергии взаимодействия мо­лекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимо­действия не действуют (г), то П=0. При постепенном сближении молекул между ними появляются силы притяжения (F<0), которые совершают положитель­ную работу (A=Fdr>0). Тогда, со­гласно (60.1), потенциальная энергия вза­имодействия уменьшается, достигая мини­мума при r=r 0 . При r< r 0 с уменьшением r силы отталкивания (F >0) резко воз­растают и совершаемая против них работа отрицательна (A = Fdr <0). Потенци­альная энергия начинает тоже резко воз­растать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих мо­лекул в состоянии устойчивого равновесия (r=r 0) обладает минимальной потенци­альной энергией.

Критерием различных агрегатных со­стояний вещества является соотношение величин П min и kT . П min - наименьшая потенциальная энергия взаимодействия молекул - определяет работу, которую нужно совершить против сил притяже­ния для того, чтобы разъединить моле­кулы, находящиеся в равновесии (r=r 0); kT определяет удвоенную среднюю энер­гию, приходящуюся на одну степень сво­боды хаотического теплового движения молекул.

Если П min <, т. е. вероятность образования агрегатов из молекул доста­точно мала. Если II min >>kT , то вещество находится в твердом состоянии, так как молекулы, притягиваясь друг к другу, не могут удалиться на значительные расстоя­ния и колеблются около положений равно­весия, определяемого r0. Если П min kT , то вещество находится в жидком состоя­нии, так как в результате теплового дви­жения молекулы перемещаются в про­странстве, обмениваясь местами, но не расходясь на расстояние, превышающее r 0 . Таким образом, любое вещество в за­висимости от температуры может нахо­диться в газообразном, жидком или твер­дом агрегатном состоянии, причем темпе­ратура перехода из одного агрегатного состояния в другое зависит от значения П min для данного вещества. Например, у инертных газов П min мало, а у метал­лов - велико, поэтому при обычных (ком­натных) температурах они находятся со­ответственно в газообразном и твердом со­стояниях.

Загрузка...