Интерфейс. Браузеры. Камеры. Программы. Образование. Социальные сети

Как найти площадь в равнобедренном треугольнике. Как находить площадь треугольника (формулы)

В зависимости от вида треугольника выделяют сразу несколько вариантов нахождения его площади. К примеру, для вычисления площади прямоугольного треугольника используется формула S= a * b / 2, где а и b - это его катеты. Если же требуется узнать площадь равнобедренного треугольника, то необходимо делить на два произведение его основания и высоты. То есть, S= b*h / 2, где b – это основание треугольника, а h – его высота.

Далее, может понадобиться расчет площади равнобедренного прямоугольного треугольника. Здесь приходит на помощь следующая формула: S= a* а / 2, где катеты «а» и «а» – обязательно должны быть с одинаковыми значениями.

Также, нам часто приходится вычислять площадь равностороннего треугольника. Она находится по формуле: S= a * h/ 2, где a – сторона треугольника, и h – его высота. Или по этой формуле: S= √3/ 4 *a^2, где a - сторона.

Как находить площадь прямоугольного треугольника

Вам нужно найти площадь прямоугольного треугольника, но при этом в условии задачи не указаны размеры сразу двух его катетов? Тогда этой формулой (S= a * b / 2) мы не сможем воспользоваться напрямую.

Рассмотрим несколько возможных вариантов решения:

  • Если Вам неизвестна длина одного катета, но даны размеры гипотенузы и второго катета, то обращаемся к великому Пифагору и по его теореме (a^2+b^2=c^2) высчитываем длину неизвестного катета, затем используем ее для расчета площади треугольника.
  • Если дана длина одного катета и градусный наклон угла противолежащего ему: находим длину второго катета по формуле - a=b*ctg(C).
  • Дано: длина одного катета и градусный наклон угла прилежащего к нему: для нахождения длины второго катета применяем формулу - a=b*tg(C).
  • И последнее, дано: угол и длина гипотенузы: вычисляем длину обеих его катетов, по таким формулам - b=c*sin(C) и a=c*cos(C).

Как находить площадь равнобедренного треугольника

Площадь равнобедренного треугольника можно очень легко и быстро найти по формуле S= b*h / 2, но, при отсутствии одного из показателей, задача значительно усложняется. Ведь необходимо выполнять дополнительные действия.

Возможные варианты задач:

  • Дано: длина одной из боковых сторон и длина основания. Находим через теорему Пифагора высоту, то есть длину второго катеты. При условии, что длина основания, разделенная на два, является катетом, а изначально известная боковая сторона – гипотенузой.
  • Дано: основание и угол между боковой стороной и основанием. Вычисляем по формуле h=c*ctg(B)/2 высоту (не забываем сторону «c» разделить на два).
  • Дано: высота и угол, который был образован основанием и боковой стороной: применяем формулу c=h*tg(B)*2 для нахождения высоты, и полученный результат умножаем на два. Далее вычисляем площадь.
  • Известна: длина боковой стороны и угол, который образовался между ним и высотой. Решение: используем формулы - c=a*sin(C)*2 и h=a*cos(C) для нахождения основания и высоты, после чего считаем площадь.

Как найти площадь равнобедренного прямоугольного треугольника

Если все данные известны, то по стандартной формуле S= a* a / 2 вычисляем площадь равнобедренного прямоугольного треугольника, если же в задаче не указаны некоторые показатели, то выполняются дополнительные действия.

Например: нам не известны длины обеих сторон (мы помним, что в равнобедренном прямоугольном треугольнике они равны), но дана длинна гипотенузы. Применим теорему Пифагора для нахождения одинаковых сторон «a» и «a». Формула Пифагора: a^2+b^2=c^2. В случае с равнобедренным прямоугольным треугольником она преобразовывается в такую: 2a^2 = c^2. Получается, чтобы найти катет «а», нужно длину гипотенузы поделить на корень из 2. Результат решения и будет длинной обеих катетов равнобедренного прямоугольного треугольника. Далее находим площадь.

Как найти площадь равностороннего треугольника

С помощью формулы S= √3/ 4*a^2 можно легко высчитать площадь равностороннего треугольника. Если известен радиус описанной окружности треугольника, то площадь можно найти по формуле: S= 3√3/ 4*R^2, где R - радиус окружности.

    Выясните, как найти площадь параллелограмма. Квадраты и прямоугольники являются параллелограммами, как и любая другая четырехсторонняя фигура, у которой противоположные стороны параллельны. Площадь параллелограмма вычисляется по формуле: S = bh , где «b» – основание (нижняя сторона параллелограмма), «h» – высота (расстояние от верхней до нижней стороны; высота всегда пересекает основание под углом 90°).

    • В квадратах и прямоугольниках высота равна боковой стороне, так как боковые стороны пересекают верхнюю и нижнюю стороны под прямым углом.
  1. Сравните треугольники и параллелограммы. Между этими фигурами существует простая связь. Если любой параллелограмм разрезать по диагонали, получатся два равных треугольника. Аналогично, если сложить два равных треугольника, получится параллелограмм. Поэтому площадь любого треугольника вычисляется по формуле: S = ½bh , что составляет половину площади параллелограмма.

    Найдите основание равнобедренного треугольника. Теперь вы знаете формулу для вычисления площади треугольника; осталось выяснить, что такое «основание» и «высота». Основание (обозначается как «b») – это сторона, которая не равна двум другим (равным) сторонам.

  2. Опустите перпендикуляр на основание. Сделайте это из вершины треугольника, которая противоположна основанию. Помните, что перпендикуляр пересекает основание под прямым углом. Такой перпендикуляр является высотой треугольника (обозначается как «h»). Как только вы найдете значение «h», вы сможете вычислить площадь треугольника.

    • В равнобедренном треугольнике высота пересекает основание точно посередине.
  3. Посмотрите на половину равнобедренного треугольника. Обратите внимание, что высота разделила равнобедренный треугольник на два равных прямоугольных треугольника. Посмотрите на один из них и найдите его стороны:

    • Короткая сторона равна половине основания: b 2 {\displaystyle {\frac {b}{2}}} .
    • Вторая сторона – это высота «h».
    • Гипотенуза прямоугольного треугольника является боковой стороной равнобедренного треугольника; обозначим ее как «s».
  4. Воспользуйтесь теоремой Пифагора . Если известны две стороны прямоугольного треугольника, его третью сторону можно вычислить по теореме Пифагора: (сторона 1) 2 + (сторона 2) 2 = (гипотенуза) 2 . В нашем примере теорема Пифагора запишется так: .

    • Скорее всего, теорема Пифагора вам известна в такой записи: a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} . Мы употребляем слова «сторона 1», «сторона 2» и «гипотенуза», чтобы предотвратить путаницу с переменными из примера.
  5. Вычислите значение «h». Помните, что в формуле для вычисления площади треугольника есть переменные «b» и «h», но значение «h» неизвестно. Перепишите формулу, чтобы вычислить «h»:

    • (b 2) 2 + h 2 = s 2 {\displaystyle ({\frac {b}{2}})^{2}+h^{2}=s^{2}}
      h 2 = s 2 − (b 2) 2 {\displaystyle h^{2}=s^{2}-({\frac {b}{2}})^{2}}
      .
  6. В формулу подставьте известные значения и вычислите «h». Эту формулу можно применить к любому равнобедренному треугольнику, стороны которого известны. Вместо «b» подставьте значение основания, а вместо «s» – значение боковой стороны, чтобы найти значение «h».

    • В нашем примере: b = 6 см; s = 5 см.
    • Подставьте значения в формулу:
      h = (s 2 − (b 2) 2) {\displaystyle h={\sqrt {(}}s^{2}-({\frac {b}{2}})^{2})}
      h = (5 2 − (6 2) 2) {\displaystyle h={\sqrt {(}}5^{2}-({\frac {6}{2}})^{2})}
      h = (25 − 3 2) {\displaystyle h={\sqrt {(}}25-3^{2})}
      h = (25 − 9) {\displaystyle h={\sqrt {(}}25-9)}
      h = (16) {\displaystyle h={\sqrt {(}}16)}
      h = 4 {\displaystyle h=4} см.
  7. Подставьте значения основания и высоты в формулу для вычисления площади треугольника. Формула: S = ½bh; подставьте в нее значения «b» и «h» и вычислите площадь. В ответе не забудьте написать квадратные единицы измерения.

    • В нашем примере основание равно 6 см, а высота равна 4 см.
    • S = ½bh
      S = ½(6 см)(4 см)
      S = 12 см 2 .
  8. Рассмотрим более сложный пример. В большинстве случаев вам будет дана более трудная задача, чем рассмотренная в нашем примере. Чтобы вычислить высоту, нужно извлечь квадратный корень, который, как правило, не извлекается нацело. В этом случае запишите значение высоты в виде упрощенного квадратного корня . Вот новый пример:

    • Вычислите площадь равнобедренного треугольника, стороны которого равны 8 см, 8 см, 4 см.
    • В качестве основания «b» выберите сторону, которая равна 4 см.
    • Высота: h = 8 2 − (4 2) 2 {\displaystyle h={\sqrt {8^{2}-({\frac {4}{2}})^{2}}}}
      = 64 − 4 {\displaystyle ={\sqrt {64-4}}}
      = 60 {\displaystyle ={\sqrt {60}}}
    • Упростите квадратный корень с помощью множителей: h = 60 = 4 ∗ 15 = 4 15 = 2 15 . {\displaystyle h={\sqrt {60}}={\sqrt {4*15}}={\sqrt {4}}{\sqrt {15}}=2{\sqrt {15}}.}
    • S = 1 2 b h {\displaystyle ={\frac {1}{2}}bh}
      = 1 2 (4) (2 15) {\displaystyle ={\frac {1}{2}}(4)(2{\sqrt {15}})}
      = 4 15 {\displaystyle =4{\sqrt {15}}}
    • Ответ можно записать с корнем или извлечь корень на калькуляторе и записать ответ в виде десятичной дроби (S ≈ 15,49 см 2).

Математика — это удивительная наука. Однако такая мысль приходит только тогда, когда ее понимаешь. Чтобы этого достичь, нужно решать задачи и примеры, чертить схемы и рисунки, доказывать теоремы.

Путь к пониманию геометрии лежит через решение задач. Отличным примером могут служить задания, в которых нужно найти площадь равнобедренного треугольника.

Что такое равнобедренный треугольник, и в чем его отличие от других?

Чтобы не пугаться терминов «высота», «площадь», «основания», «равнобедренного треугольника» и прочих, потребуется начать с теоретических основ.

Сначала о треугольнике. Это плоская фигура, которая образована из трех точек — вершин, в свою очередь, соединенных отрезками. Если два из них оказываются равны друг другу, то треугольник становится равнобедренным. Эти стороны получили название боковых, а оставшаяся стала основанием.

Существует частный случай равнобедренного треугольника — равносторонний, когда и третья сторона равна двум боковым.

Свойства фигуры

Они оказываются верными помощниками в решении задач, которые требуют найти площадь равнобедренного треугольника. Поэтому знать и помнить о них необходимо.

  • Первое из них: углы равнобедренного треугольника, одна сторона которых — основание, всегда равны друг другу.
  • Важным является и свойство о дополнительных построениях. Проведенные к непарной стороне высота, медиана и биссектриса совпадают.
  • Эти же отрезки, проведенные из углов при основании треугольника, попарно равны. Это тоже часто облегчает поиск решения.
  • Два равных угла в нем всегда имеют значение меньше чем 90º.
  • И последнее: вписанная и описанная окружности строятся так, что их центры лежат на высоте к основанию треугольника, а значит медиане и биссектрисе.

Как в задаче распознать равнобедренный треугольник?

Если при решении задания встает вопрос о том, как найти площадь равнобедренного треугольника, то сначала нужно понять, что он относится к этой группе. А в этом помогут определенные признаки.

  • Равны два угла или две стороны треугольника.
  • Биссектриса является еще и медианой.
  • Высота треугольника оказывается медианой или биссектрисой.
  • Равны две высоты, медианы или биссектрисы фигуры.

Обозначения величин, принятые в рассматриваемых формулах

Для упрощения того, как находить площадь равнобедренного треугольника по формулам, введена замена его элементов на буквы.

Внимание! Важно не путать «а» с «А» и «в» с «В». Это разные величины.

Формулы, которыми можно воспользоваться в разных задачах

Известны длины сторон, и требуется найти площадь равнобедренного треугольника.

В этом случае нужно возвести в квадрат оба значения. То число, которое получилось от изменения боковой стороны, умножить на 4 и вычесть из него второе. Из полученной разности извлечь квадратный корень. Длину основания разделить на 4. Два числа перемножить. Если записать эти действия буквами, то получится такая формула:

Пусть она будет записана под №1.

Найти по значениям сторон площадь равнобедренного треугольника. Формула, которая кому-то может показаться проще, чем первая.

Первым действием нужно найти половину основания. Потом найти сумму и разность этого числа с боковой стороной. Два последних значения перемножить и извлечь квадратный корень. Последним действием умножить все на половину основания. Буквенное равенство будет выглядеть так:

Это формула №2.

Способ найти площадь равнобедренного треугольника, если известны основание и высота к нему.

Одна из самых коротких формул. В ней нужно перемножить обе данные величины и разделить их на 2. Вот как она будет записана:

Номер этой формулы - 3.

В задании известны стороны треугольника и значение угла, лежащего между основанием и боковой стороной.

Здесь, для того чтобы узнать, чему будет равна площадь равнобедренного треугольника, формула будет состоять из нескольких множителей. Первый из них — это значение синуса угла. Второй равен произведению боковой стороны на основание. Третий — дробь ½. Общая математическая запись:

Порядковый номер формулы — 4.

В задаче даны: боковая сторона равнобедренного треугольника и угол, лежащий между его боковыми сторонами.

Как и в предыдущем случае, площадь находится по трем множителям. Первый равен значению синуса угла, указанного в условии. Второй — это квадрат стороны. И последний также равен половине единицы. В итоге формула запишется так:

Ее номер - 5.

Формула, которая позволяет найти площадь равнобедренного треугольника, если известны его основание и угол, лежащий напротив него.

Сначала нужно вычислить тангенс половины известного угла. Полученное число умножить на 4. Возвести в квадрат длину боковой стороны, которое потом разделить на предыдущее значение. Таким образом, получится такая формула:

Номер последней формулы - 6.

Примеры задач

Первая задача: известно, что основание равнобедренного треугольника равно 10 см, а его высота - 5 см. Нужно определить его площадь.

Для ее решения логично выбрать формулу под номером 3. В ней все известно. Подставить числа и сосчитать. Получится, что площадь равна 10 * 5 / 2. То есть 25 см 2 .


Вторая задача: в равнобедренном треугольнике даны боковая сторона и основание, которые равны соответственно 5 и 8 см. Найти его площадь.

Первый способ. По формуле №1. При возведении в квадрат основания получается число 64, а учетверенный квадрат боковой стороны — 100. После вычитания из второго первого получится 36. Из него прекрасно извлекается корень, который равен 6. Основание, поделенное на 4, равно 2. Итоговое значение определится как произведение 2 и 6, то есть 12. Это ответ: искомая площадь равна 12 см 2 .

Второй способ. По формуле №2. Половина основания равна 4. Сумма боковой стороны и найденного числа дает 9, их же разность — 1. После умножения получается 9. Извлечение квадратного корня дает 3. И последнее действие, умножение 3 на 4, что дает те же 12 см 2 .

Решая задачи по геометрии и определяя, как найти площадь равнобедренного треугольника, можно получить неоценимый опыт. Чем больше различных вариантов заданий выполнено, тем проще найти ответ в новой ситуации. Поэтому регулярное и самостоятельное выполнение всех заданий — это путь к успешному усвоению материала.

Встаёт не только перед школьниками или студентами, но и в реальной, практической жизни. Например, во время строительства возникает необходимость отделки фасадной части, находящейся под крышей. Как вычислить количество нужного материала?

Часто с подобными задачами сталкиваются мастера, которые работают с тканью или кожей. Ведь многие детали, которые предстоит выкроить мастеру, имеют как раз форму равнобедренного треугольника.

Итак, существует несколько способов, помогающих найти площадь равнобедренного треугольника. Первый - вычисление её по основанию и высоте.

Для решения нам необходимо построить для наглядности треугольник MNP с основанием MN и высотой PO. Теперь кое-что достроим в чертеже: из точки P провести линию, параллельную основанию, а из точки M - линию, параллельную высоте. Точку пересечения назовём Q. Чтобы узнать, как найти площадь равнобедренного треугольника, нужно рассмотреть полученный четырёхугольник MOPQ, в котором боковая сторона данного нам треугольника MP является уже его диагональю.

Докажем сначала, что это прямоугольник. Так как мы строили его сами, то знаем, что стороны MO и OQ параллельны. И стороны QM и OP тоже параллельны. Угол POM прямой, значит и угол OPQ тоже прямой. Следовательно, получившийся чётырёхугольник является прямоугольником. Найти его площадь не составит труда, она равна произведению PO на OM. OM - это половина основания данного треугольника MPN. Отсюда вытекает, что площадь построенного нами прямоугольника равна полупроизведению высоты прямоугольного треугольника на его основание.

Вторым этапом поставленной перед нами задачи, как определить площадь треугольника, является доказательство того факта, что полученный нами прямоугольник по площади соответствует данному равнобедренному треугольнику, то есть, что площадь треугольника также равна полупроизведению основания и высоты.

Сравним для начала треугольник PON и PMQ. Они оба прямоугольны, так как прямой угол в одном из них образован высотой, а прямой угол в другом является углом прямоугольника. Гипотенузы в них являются сторонами равнобедренного треугольника, следовательно, также равны. Катеты PO и QM также равны как параллельные стороны прямоугольника. Значит, и площадь треугольника PON , и треугольника PMQ равны между собой.

Площадь прямоугольника QPOM равна площадям треугольников PQM и MOP в сумме. Заменив надстроенный треугольник QPM треугольником PON, получаем в сумме данный нам для вывода теоремы треугольник. Теперь мы знаем, как найти площадь равнобедренного треугольника по основанию и высоте - вычислить их полупроизведение.

Но можно узнать, как найти площадь равнобедренного треугольника по основанию и боковой стороне. Здесь также существует два варианта: теорема Герона и Пифагора. Рассмотрим решение с применением теоремы Пифагора. Для примера возьмём тот же PMN с высотой PO.

В прямоугольном треугольнике POM MP - гипотенуза. Её квадрат равен сумме квадратов PO и OM. А так как OM - половина основания, которое нам известно, то мы легко может найти OM и возвести число в квадрат. Произведя вычитание из квадрата гипотенузы полученное число, узнаем, чему равен квадрат другого катета, который в равнобедренном треугольнике является высотой. Найдя из разности и узнав высоту прямоугольного треугольника, можно дать ответ на поставленное перед нами задание.

Нужно просто перемножить высоту на основание и полученный результат разделить напополам. Почему именно так следует поступать, мы объяснили в первом варианте доказательства.

Бывает, что нужно произвести вычисления по боковой стороне и углу. Тогда находим высоту и основание, используя формулу с синусами и косинусами, и, опять же, перемножаем их и делим результат пополам.

Инструкция

Видео по теме

Обратите внимание








Источники:

Для начала договоримся об обозначениях. Катетом называют сторону прямоугольного треугольника, которая прилежит к прямому углу (т.е. составляет с другой стороной угол 90 градусов). Длины катетов условимся обозначать a и b. Величины острых углов прямоугольного треугольника, противолежащих катетам, назовём A и B соответственно. Гипотенузой называют сторону прямоугольного треугольника, которая противолежит прямому углу (т.е. находится напротив прямого угла, с другими сторонами треугольника образует острые углы). Длину гипотенузы обозначим через с. Искомую площадь обозначим через S.

Инструкция

Примените формулу S = (a^2)/(2*tg(A)) в том случае, если вам задан только один из катетов (a), но также известен и противолежащий этому катету угол (A). Знаком "^2" обозначена возведения в квадрат.

Используйте формулу S=(a^2)*tg(B)/2 d случае, если вам задан только один из катетов (a), но также известен и прилежащий этому катету угол (B).

Видео по теме

Источники:

  • "Пособие по математике для поступающих в вузы", под ред. Г.Н. Яковлева, 1982.

Равнобедренным считается такой треугольник, у которого две стороны равны. Площадь этого треугольника можно рассчитать несколькими методами.

Инструкция

Видео по теме

Обратите внимание

Существуют признаки равнобедренного треугольника:
1) У равнобедренного треугольника есть 2 равных угла;
2) Высота треугольника совпадает с его медианой;
3) Высота треугольника совпадает с его биссектрисой;
4) Биссектриса треугольника совпадает с его медианой;
5) У равнобедренного треугольника 2 медианы равны;
6) У равнобедренного треугольника 2 высоты равны;
7) У равнобедренного треугольник 2 биссектрисы равны.

Источники:

  • площадь треугольника равнобедренного

Одной из фигур, рассматриваемых на уроках математики и геометрии, является треугольник. Треугольник - многоугольник, у которого есть 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, попарно соединенные тремя отрезками. Существует множество задач, связанных с нахождением различных величин этой фигуры. Одна из них – площадь . В зависимости от исходных данных задачи имеется несколько формул для определения площади треугольника .

Инструкция

Если вам известны длина стороны а и проведенная на нее высота h треугольника , используйте формулу S= ?h*a.

Если известны длина одной из сторон треугольника и его высота, опущенная на эту сторону, перемножьте длину стороны на высоту, а полученный результат разделите на два.

Если перед вами прямоугольный треугольник, измерьте при помощи линейки длины егo катетoв, то есть сторон, которые прилегают к прямому углу. Перемножьте длины катетов, а полученный результат разделите на два.

Если вы располагаете данными о величине угла между двумя треугольника, и вам известны длины этих сторон, то площадь треугольника найдите по формуле:

St = ½ * A * B * sinα, где St – площадь треугольника; A и B – длины сторон треугольника; α - угла, расположенного между этими сторонами.

S = 1/2 (АВ + ВС + AC) = р r.

Вычислите полупериметр:

р = (5 + 7 + 10) = 11.

Рассчитайте искомую величину:

S = √(11 (11-5) (11-7) (11-10)) ≈ 16,2.

Три точки, однозначно определяющие треугольник в Декартовой системе координат - это его вершины. Зная их положение относительно каждой из координатных осей можно вычислить любые параметры этой плоской фигуры, включая и ограничиваемую ее периметром площадь . Это можно сделать несколькими способами.

Инструкция

Используйте формулу Герона для расчета площади треугольника . В ней задействованы размеры трех сторон фигуры, поэтому вычисления начините с . Длина каждой стороны должна быть равна корню из суммы квадратов длин ее проекций на координатные оси. Если обозначить координаты A(X₁,Y₁,Z₁), B(X₂,Y₂,Z₂) и C(X₃,Y₃,Z₃), длины их сторон можно выразить так: AB = √((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²), BC = √((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²), AC = √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²).

Для упрощения расчетов введите вспомогательную переменную - полупериметр (Р). Из , что это половина суммы длин всех сторон: Р = ½*(AB+BC+AC) = ½*(√((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²) + √((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²) + √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²).

Рассчитайте площадь (S) по формуле Герона - извлеките корень из произведения полупериметра на разность между ним и длиной каждой из сторон. В общем виде ее можно записать так: S = √(P*(P-AB)*(P-BC)*(P-AC)) = √(P*(P-√((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²))*(P-√((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²))*(P-√((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²)).

Для практических расчетов удобно пользоваться специализированными -калькуляторами. Это скрипты, размещенные на серверах некоторых сайтов, которые проделают все необходимые расчеты на основе координат, введенных вами в соответствующую форму. Единственный такого сервиса - он не дает объяснений и обоснований для каждого шага вычислений. Поэтому, если вас интересует только конечный результат, а не вычисления в общем виде, перейдите, например, на страницу http://planetcalc.ru/218/.

В поля формы введите каждую координату каждой из вершин треугольника - они здесь как Ax, Ay, Az и т.д. Если треугольник задан двухмерными координатами, в поля - Az, Bz и Cz - пишите ноль. В поле «Точность вычисления» установите нужное число знаков после запятой, кликая мышкой

Загрузка...