Интерфейс. Браузеры. Камеры. Программы. Образование. Социальные сети

Полная мощность источника тока определение. Исследование зависимости мощности и кпд источника тока от внешней нагрузки. Примеры решения задач

ЛАБОРАТОРНАЯ РАБОТА № 3.7.

ИССЛЕДОВАНИЕ ПОЛЕЗНОЙ МОЩНОСТИ И КПД ИСТОЧНИКОВ ТОКА

Фамилия И.О. _____________ Группа ______ Дата ______

Введение

Цель данной работы – экспериментально проверить теоретические выводы о зависимости полезной мощности и КПД источника тока от сопротивления нагрузки.

Электрическая цепь состоит из источника тока, подводящих проводов и нагрузки или потребителя тока. Каждый из этих элементов цепи обладает сопротивлением.

Сопротивление подводящих проводов обычно бывает очень мало, поэтому им можно пренебречь. В каждом участке цепи будет расходоваться энергия источника тока. Весьма важное практическое значение имеет вопрос о целесообразном расходовании электрической энергии.

Полная мощность Р, выделяемая в цепи, будет слагаться из мощностей, выделяемых во внешней и внутренней частях цепи: P = I 2 ·R + I 2 ·r = I 2 (R + r) . Так как I(R + r) = ε , то Р =I·ε,

где R – внешнее сопротивление; r – внутреннее сопротивление; ε – ЭДС источника тока.

Таким образом, полная мощность, выделяемая в цепи, выражается произведением силы тока на ЭДС элемента. Эта мощность выделяется за счет каких-либо сторонних источников энергии; такими источниками энергии могут быть, например, химические процессы, происходящие в элементе.

Рассмотрим, как зависит мощность, выделяемая в цепи, от внешнего сопротивления R, на которое замкнут элемент. Предположим, что элемент данной ЭДС и данного внутреннего сопротивления r замыкается внешним сопротивлением R; определим зависимость от R полной мощности Р, выделяемой в цепи, мощности Р а, выделяемой во внешней части цепи и КПД.

Сила тока I в цепи выражается по закону Ома соотношением

Полная мощность, выделяемая в цепи, будет равна

При увеличении R мощность падает, стремясь асимптотически к нулю при неограниченном увеличении R.

Мощность, выделяющаяся во внешней части цепи, равна

Отсюда видно, что полезная мощность Р а равна нулю в двух случаях – при R = 0 и R = ∞.

Исследуя функцию Р а = f(R) на экстремум, получим, что Р а достигает максимума при R = r, тогда

Чтобы убедится в том, что максимум мощности Р а получается при R = r, возьмем производную Р а по внешнему сопротивлению

Откуда

По условию максимума требуется равенство нулю первой производной

r 2 = R 2

R = r

Можно убедиться, что при этом условии мы получим максимум, а не минимум для Р а, определив знак второй производной .

Коэффициент полезного действия (КПД) η источника ЭДС это величина отношения мощности Р а, выделяющейся во внешней цепи, к полной мощности Р, развиваемой источником ЭДС.

В сущности КПД источника ЭДС указывает, какая доля работы сторонних сил преобразуется в электрическую энергию и отдается во внешнюю цепь.

Выражая мощность через силу тока I, разность потенциалов во внешней цепи U и величину электродвижущей силы ε, получим

То есть КПД источника ЭДС равен отношению напряжения во внешней цепи к ЭДС. В условиях применимости закона Ома можно далее заменить U = IR; ε = I(R + r ), тогда

Следовательно, в том случае, когда вся энергия расходуется на Ленц-Джоулево тепло, КПД источника ЭДС равен отношению внешнего сопротивления к полному сопротивлению цепи.

При R = 0 имеем η = 0. С увеличением R, КПД возрастает, стремится к значению η=1 при неограниченном увеличении R, однако при этом мощность, выделяющаяся во внешней цепи, стремится к нулю. Таким образом, требования одновременного получения максимальной полезной мощности при максимальном КПД невыполнимы.

Когда Р а достигает максимума, то η = 50%. Когда же КПД η близок к единице, полезная мощность мала по сравнению с максимальной мощностью, которую мог бы развивать данный источник. Поэтому для увеличения КПД необходимо по возможности уменьшать внутреннее сопротивление источника ЭДС, например, аккумулятора или динамо-машины.

В случае R = 0 (короткое замыкание) Р а = 0 и вся мощность выделяется внутри источника. Это может привести к перегреву внутренних частей источника и выводу его из строя. По этой причине короткие замыкания источников (динамо-машины, аккумуляторные батареи) недопустимы!

На рис. 1 кривая 1 дает зависимость мощности Р а, выделяемой во внешней цепи, от сопротивления внешней части цепи R; кривая 2 дает зависимость от R полной мощности Р; кривая 3 – ход КПД η от того же внешнего сопротивления.

Порядок выполнения работы

1. Ознакомиться со схемой на стенде.

2. Установить с помощью магазина сопротивление R = 100 Ом.

3. Замкнуть ключ К.

4. Произвести измерения силы тока в цепи последовательно для различных девяти сопротивлений на магазине сопротивлений, начиная от 100 Ом и выше. Внести в таблицу результаты измерений силы тока, выразив их в амперах.

5. Выключить ключ К.

6. Вычислить для каждого сопротивления Р, Р а (в ваттах) и η.

7. Построить графики Р, Р а и η от R.

Контрольные вопросы

1. Что называется КПД источника ЭДС?

2. Вывести формулу КПД источника ЭДС.

3. Что такое полезная мощность источника ЭДС?

4. Вывести формулу полезной мощности источника ЭДС.

5. Чему равна максимальная мощность, выделяемая во внешней цепи (Ра)max?

6. При каком значении R полная мощность Р, выделяющаяся в цепи, максимальна?

7. Чему равен КПД источника ЭДС при (Ра)max?

8. Произвести исследование функции (Ра) = f(R) на экстремум.

9. Зарисовать график зависимости Р, Ра и η от внешнего сопротивления R.

10. Что такое ЭДС источника?

11. Почему сторонние силы должны быть не электрического происхождения?

12. Почему недопустимо короткое замыкание для источников напряжения?

№ п/п

R, Ом

I·10 -3 , A

, Вт

, Вт

1

0

2

100

3

200

4

300

5

400

6

500

7

600

8

700

9

800

10

900

r = 300 Ом

Зависимость мощности и КПД источника тока от нагрузки

Приборы и принадлежности: лабораторная панель, два аккумулятора, миллиамперметр, вольтметр, переменныерезисторы.

Введение. Наиболее широко распространенными источниками постоянного тока являются гальванические элементы, аккумуляторы, выпрямители. Присоединим к источнику тока ту часть, которая нуждается в его электрической энергии (лампочка, радиоприемник, микрокалькулятор и т.п.). Эта часть электрической цепи называется общим словом – нагрузкой. Нагрузка обладает некоторым электрическим сопротивлением R и потребляет от источника ток силой I (рис.1).

Нагрузка образует внешнюю часть электрической цепи. Но есть и внут-ренняя часть цепи – это фактически сам источник тока, он имеет электрическое сопротивление r , в нем протекает тот же ток I . Границей между внутренним и внешним участками цепи являются клеммы “+” и “–” источника тока, к которым присоединяется потребитель

На рисунке 1 источник тока охвачен штриховым контуром.

Источник тока с электродвижущей силой Е создает в замкнутой цепи ток, сила которого определяется законом Ома :

При протекании тока по сопротивлениям R и r в них выделяется тепловая энергия, определяемая законом Джоуля-Ленца. Мощность во внешней части цепи Р е – внешняя мощность

Эта мощность является полезной .

Мощность во внутренней части Р i – внутренняя мощность . Она недоступна для использования и поэтому составляет потери мощности источника

Полная мощность источника тока Р есть сумма этих двух слагаемых,

Как видно из определений (2,3,4), каждая из мощностей зависит и от протекающего тока и от сопротивления соответствующей части цепи. Рассмотрим эту зависимость по отдельности.

Зависимость мощности P e , P i , P от тока нагрузки.

С учетом закона Ома (1) полную мощность можно записать так:

Таким образом, полная мощность источника прямо пропорциональна потребляемому току.

Мощность, выделяющаяся на нагрузке (внешняя), есть

Она равна нулю в двух случаях:

1) I = 0 и 2) E – Ir = 0 . (7)

Первое условие справедливо для разомкнутой цепи, когда R  , второе соответствует так называемому короткому замыканию источника, когда сопротивление внешней цепи R = 0 . При этом ток в цепи (см. формулу (1)) достигает наибольшего значения – тока короткого замыкания .

При этом токе полная мощность становится наибольшей

Р нб = EI кз 2 / r . (9)

Однако вся она выделяется внутри источника .

Выясним, при каких условиях внешняя мощность становится макси-мальной . Зависимость мощности P e от тока является (см. формулу (6)) параболической :

.

Положение максимума функции определим из условия:

dP e /dI = 0, dP e /dI = E – 2Ir.

Полезная мощность достигает максимального значения при токе

что составляет половину тока короткого замыкания (8), (см. рис. 2):

Внешняя мощность при этом токе составляет

(12)

т.е. максимальная внешняя мощность составляет четвертую часть наибольшей полной мощности источника.

Мощность, выделяющаяся на внутреннем сопротивлении при токе I max , определяется следующим образом:

, (13)

т.е. составляет тоже одну четверть наибольшей полной мощности источника тока. Заметим, что при токе I max

P e = P i . (14)

Когда ток в цепи стремится к наибольшему значению I кз , внутренняя мощность

т.е. равна наибольшей мощности источника (9). Это означает, что вся мощность источника выделяется на его внутреннем сопротивлении, что, разумеется, вредно с точки зрения сохранности источника тока.

Характерные точки графика зависимости P e = P e (I ) показаны на рис. 2.

Эффективность работы источника тока оценивается его коэффициентом полезного действия . КПД есть отношение полезной мощности к полной мощности источника:

= P e / P .

Используя формулу (6), выражение для КПД можно записать следующим образом:

. (15)

Из формулы (1) видно, что E Ir = IR есть напряжение U на внешнем сопротивлении. Следовательно, КПД

= U / E . (16)

Из выражения (15) также следует, что

= (17)

т.е. КПД источника зависит от тока в цепи и стремится к наибольшему значению, равному единице, при токе I 0 (рис.3). С увеличением силы тока КПД уменьшается по линейному закону и обращается в нуль при коротком замыкании, когда ток в цепи становится наибольшим I кз = E / r .

Из параболического характера зависимости внешней мощности от тока (6) следует, что одна и та же мощность на нагрузке P e может быть получена при двух различных значениях тока в цепи. Из формулы (17) и из графика (рис.3) видно, что с целью получения от источника большего КПД предпочтительна работа при меньших токах нагрузки, там этот коэффициент выше.

2.Зависимость мощности P e , P i , P от сопротивления нагрузки.

Рассмотрим зависимость полной, полезной и внутренней мощности от внешнего сопротивления R в цепи источника с ЭДС Е и внутренним сопротивлением r .

Полная мощность, развиваемая источником, может быть записана следующим образом, если в формулу (5) подставить выражение для тока (1):

Так полная мощность зависит от сопротивления нагрузки R . Она наибольшая при коротком замыкании цепи, когда сопротивление нагрузки обращается в нуль (9). С ростом сопротивления нагрузки R полная мощность уменьшается, стремясь к нулю при R .

На внешнем сопротивлении выделяется

(19)

Внешняя мощность Р е составляет часть полной мощности Р и ее величина зависит от отношения сопротивлений R /(R + r ) . При коротком замыкании внешняя мощность равна нулю. При увеличении сопротивления R она сначала увеличивается. При R  r внешняя мощность по величине стремится к полной. Но сама полезная мощность при этом становится малой, так как уменьшается полная мощность (см. формулу 18). При R  внешняя мощность стремятся к нулю как и полная.

Каково должно быть сопротивление нагрузки, чтобы получить от данного источника максимальную внешнюю (полезную) мощность (19)?

Найдем максимум этой функции из условия:

Решая это уравнение, получаем R max = r .

Таким образом, во внешней цепи выделяется максимальная мощность, если ее сопротивление равно внутреннему сопротивлению источника тока. При этом условии ток в цепи равен E /2 r , т.е. половине тока короткого замыкания (8). Максимальная полезная мощность при таком сопротивлении

(21)

что совпадает с тем, что было получено выше (12).

Мощность, выделяющаяся на внутреннем сопротивлении источника

(22)

При R  P i P , а при R =0 достигает наибольшей величины P i нб = P нб = E 2 / r . При R = r внутренняя мощность составляет половину полной, P i = P /2 . При R  r она уменьшается почти так же, как и полная (18).

Зависимость КПД от сопротивления внешней части цепи выражается следующим образом:

 = (23)

Из полученной формулы вытекает, что КПД стремится к нулю при приближении сопротивления нагрузки к нулю, и КПД стремится к наибольшему значению, равному единице, при возрастании сопротивления нагрузки до R  r . Но полезная мощность при этом уменьшается почти как 1/ R (см. формулу 19).

Мощность Р е достигает максимального значения при R max = r , КПД при этом равен, согласно формуле (23), = r /(r + r ) = 1/2. Таким образом, условие получения максимальной полезной мощности не совпадает с условием получения наибольшего КПД.

Наиболее важным результатом проведенного рассмотрения является оптимальное согласование параметров источника с характером нагрузки. Здесь можно выделить три области: 1)R  r , 2)R  r , 3) R r . Первый случай имеет место там, где от источника требуется малая мощность в течение длительного времени, например, в электронных часах, микрокалькуляторах. Размеры таких источников малы, запас электрической энергии в них небольшой, она должна расходоваться экономно, поэтому они должны работать с высоким КПД.

Второй случай – короткое замыкание в нагрузке, при котором вся мощность источника выделяется в нем и проводах, соединяющих источник с нагрузкой. Это приводит к их чрезмерному нагреванию и является довольно распространенной причиной возгораний и пожаров. Поэтому короткое замыкание источников тока большой мощности (динамо-машины, аккумуляторные батареи, выпрямители) крайне опасно.

В третьем случае от источника хотят получить максимальную мощность хотя бы на короткое время, например, при запуске двигателя автомобиля с помощью электростартера, величина КПД при этом не так уж важна. Стартер включается на короткое время. Длительная эксплуатация источника в таком режиме практически недопустима, так как она приводит к быстрому разряду автомобильного аккумулятора, его перегреву и прочим неприятностям.

Для обеспечения работы химических источников тока в нужном режиме их соединяют между собой определенным образом в так называемые батареи. Элементы в батарее могут соединяться последовательно, параллельно и по смешанной схеме. Та или иная схема соединения определяется сопротивлением нагрузки и величиной потребляемого тока.

Важнейшим эксплуатационным требованием к энергетическим установкам является высокий КПД их работы. Из формулы (23) видно, что КПД стремится к единице, если внутреннее сопротивление источника тока мало по сравнению с сопротивлением нагрузки

Параллельно можно соединять элементы, имеющие одинаковые ЭДС. Если соединено n одинаковых элементов, то от такой батареи можно получить ток

Здесь r 1 – сопротивление одного элемента, Е 1 – ЭДС одного элемента.

Такое соединение выгодно применять при низкоомной нагрузке, т.е. при R r . Так как общее внутреннее сопротивление батареи при параллельном соединении уменьшается в n раз по сравнению с сопротивлением одного элемента, то его можно сделать близким сопротивлению нагрузки. Благодаря этому увеличивается КПД источника. Возрастает в n раз и энергетическая емкость батареи элементов.

 r , то выгоднее соединять элементы в батарею последовательно. При этом ЭДС батареи будет в n раз больше ЭДС одного элемента и от источника можно получить необходимый ток

Целью данной лабораторной работы является экспериментальная проверка полученных выше теоретических результатов о зависимости полной, внутренней и внешней (полезной) мощности и КПД источника как от силы потребляемого тока, так и от сопротивления нагрузки.

Описание установки. Для исследования рабочих характеристик источника тока применяется электрическая цепь, схема которой показана на рис. 4. В качестве источника тока используются два щелочных аккумулятора НКН-45, которые соединяются последователь-но в одну батарею через резистор r , моделирующий внутреннее сопро-тивление источника.

Его включение искусственно увеличивает внутреннее сопротивление аккуму-ляторов, что 1)защищает их от перегрузки при переходе в режим короткого замыкания и 2)дает возможность изменять внутреннее сопротивление источника по желанию экспериментатора. В качестве нагрузки (внешнего сопротивления цепи) п
рименяются два переменных резистора R 1 и R 2 . (один грубой регулировки, другой – тонкой), что обеспечивает плавное регулирование тока в широком диапазоне.

Все приборы смонтированы на лабораторной панели. Резисторы закреплены под панелью, наверх выведены их ручки управления и клеммы, около которых имеются соответствующие надписи.

Измерения. 1.Установите переключатель П в нейтральное положение, выключатель Вк разомкните. Ручки резисторов поверните против часовой стрелки до упора (это соответствует наибольшему сопротивлению нагрузки).

    Соберите электрическую цепь по схеме (рис. 4), не присоединяя пока источники тока.

    После проверки собранной цепи преподавателем или лаборантом присоедините аккумуляторы Е 1 и Е 2 , соблюдая полярность.

    Установите ток короткого замыкания. Для этого поставьте переключатель П в положение 2 (внешнее сопротивление равно нулю) и с помощью резистора r установите стрелку миллиамперметра на предельное (правое крайнее) деление шкалы прибора – 75 или 150 мА. Благодаря резистору r в лабораторной установке есть возможность регулировать внутреннее сопротивление источника тока. На самом деле внутреннее сопротивление – величина постоянная для данного типа источников и изменить его невозможно.

    Поставьте переключатель П в положение 1 , включив тем самым внешнее сопротивление (нагрузку) R = R 1 + R 2 в цепь источника.

    Изменяя ток в цепи через 5…10 мА от наибольшего до наименьшего значения с помощью резисторов R 1 и R 2 , запишите показания миллиамперметра и вольтметра (напряжение на нагрузке U ) в таблицу.

    Поставьте переключатель П в нейтральное положение. В этом случае к источнику тока присоединен только вольтметр, который обладает довольно большим сопротивлением по сравнению с внутренним сопротивлением источника, поэтому показание вольтметра будет чуть-чуть меньше ЭДС источник. Поскольку у вас нет другой возможности определить ее точное значение, остается принять показание вольтметра за Е . (Подробнее об этом см. в лабораторной работе № 311).

пп

мА

P e ,

P i ,

R ,

Обработка результатов . 1. Для каждого значения тока вычислите:

    полную мощность по формуле (5),

    внешнюю (полезную) мощность по формуле,

    внутреннюю мощность из соотношения

    сопротивление внешнего участка цепи из закона Ома R = U / I ,

    КПД источника тока по формуле (16).

    Постройте графики зависимостей:

    полной, полезной и внутренней мощности от тока I (на одном планшете),

    полной, полезной и внутренней мощности от сопротивления R (также на одном планшете); разумней построить только часть графика, соответствующего его низкоомной части, и отбросить 4-5 экспериментальных точек из 15 в высокоомной области,

    КПД источника от величины потребляемого тока I ,

    КПД от сопротивления нагрузки R .

    Из графиков P e от I и P e от R определите максимальную полезную мощность во внешней цепи P e max .

    Из графика P e от R определите внутреннее сопротивление источника тока r .

    Из графиков P e от I и P e от R найдите КПД источника тока при I max и при R max .

Контрольные вопросы

1.Нарисуйте схему электрической цепи, применяемой в работе.

2.Что собой представляет источник тока? Что является нагрузкой? Что такое внутренний участок цепи? Откуда начинается и где заканчивается внешний участок цепи? Для чего установлен переменный резистор r ?

3.Что называется внешней, полезной, внутренней, полной мощностью? Какая мощность составляет потери?

4.Почему полезную мощность в этой работе предлагают рассчитывать по формуле P e = IU , а не по формуле (2)? Обоснуйте эти рекомендации.

5.Сравните экспериментальные результаты, полученные Вами, с расчетными, приведенными в методическом руководстве, как при исследовании зависимости мощности от тока, так и от сопротивления нагрузки.

Источниках тока Реферат >> Физика

Продолжается от 3 до 30 мин в зависимости от температуры... мощность (до 1,2 кВт/кг). Время разряда не превышает 15 мин. 2.2. Ампульные источники тока ... для сглаживания колебаний нагрузки в энергосистемах в... следует отнести относительно невысокий КПД (40-45%) и...

  • Мощности гармонических колебаний в электрических цепях

    Лекция >> Физика

    ... от источника в нагрузку поступает необходимая средняя мощность . Поскольку комплексные напряжения и токи ... нагрузку и развиваемой генератором мощности , равен  = 0,5. С увеличением RH – средняя мощность уменьшается, но растет КПД . График зависимости КПД ...

  • Реферат >> Коммуникации и связь

    ... мощность устройства - потребляемая мощность устройства - выходная мощность устройства - КПД устройства Принимаем КПД ... который в зависимости от глубины регулирования... постоянным независимо от изменения тока нагрузки . У источников питания с...

  • Курсовая работа >> Физика

    ... мощности ИБП делятся на Источники бесперебойного питания малой мощности (с полной мощностью ... от аккумуляторов, минусом – снижение КПД ... току по сравнению с номинальной величиной тока нагрузки . ... 115 В в зависимости от нагрузки ; Привлекательный внешний вид...

  • Рассмотрим замкнутую неразветвленную цепь, состоящую из источника тока и резистора.

    Применим закон сохранения энергии ко всей цепи:

    .

    Так как , а для замкнутой цепи точки 1 и 2 совпадают, мощность электрических сил в замкнутой цепи равна нулю . Это равносильно утверждению о потенциальности электрического поля постоянного тока, о которой уже упоминалось ранее.

    Итак, в замкнутой цепи всё тепло выделяется за счет работы сторонних сил: , или , и мы снова приходим к закону Ома, теперь для замкнутой цепи: .

    Полной мощностью цепи называют мощность сторонних сил, она же равна полной тепловой мощности:

    Полезной называют тепловую мощность, выделяемую во внешней цепи (независимо от того, полезна она или вредна в данном конкретном случае):

    (3).

    Роль электрических сил в цепи . Во внешней цепи, на нагрузке R , электрические силы совершают положительную работу, а при перемещении заряда внутри источника тока – такую же по величине отрицательную. Во внешней цепи теплота выделяется за счет работы электрического поля. Работу, отданную во внешней цепи, электрическое поле «возвращает» себе внутри источника тока. В итоге вся теплота в цепи «оплачена» работой сторонних сил: источник тока постепенно теряет запасенную в нем химическую (или какую-то другую) энергию. Электрическое же поле играет роль «курьера», доставляющего энергию во внешнюю цепь.

    Зависимость полной, полезной мощностей и КПД от сопротивления нагрузки R .

    Эти зависимости получаем из формул (1 – 2) и закона Ома для полной цепи:

    . (4)

    . (5)

    Графики этих зависимостей вы видите на рисунке.

    Полная мощность монотонно убывает с ростом , т.к. убывает сила тока в цепи. Максимальная полная мощность выделяется при , т.е. при коротком замыкании . Источник тока совершает максимальную работу за единицу времени, но вся она идет на нагревание самого источника. Максимальная полная мощность равна

    .

    Полезная мощность имеет максимум при (в чем вы можете убедиться, взяв производную от функции (5) и приравняв ее нулю). Подставив в выражение (5) , найдем максимальную полезную мощность:

    .

    Иметь представление о мощности при прямолинейном и кри­волинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.

    Знать зависимости для определения мощности при поступа­тельном и вращательном движениях, КПД.

    Мощность

    Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.

    Мощность - работа, выполненная в единицу времени:

    Единицы измерения мощности: ватты, киловатты,

    Мощность при поступательном движении (рис. 16.1)

    Учитывая, что S/t = v cp , полу­чим

    где F - модуль силы, действующей на тело; v ср - средняя скорость движения тела.

    Средняя мощность при поступательном движении равна про­изведению модуля силы на среднюю скорость перемещения и на ко­синус угла между направлениями силы и скорости.

    Мощность при вращении (рис. 16.2)

    Тело движется по дуге радиуса r из точки М 1 в точку M 2

    Работа силы:

    где М вр - вращающий момент.

    Учитывая, что

    Получим

    где ω cp - средняя угловая скорость.

    Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.

    Если при выполнении работы усилие машины и скорость дви­жения меняются, можно определить мощность в любой момент вре­мени, зная значения усилия и скорости в данный момент.

    Коэффициент полезного действия

    Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы со­вершает еще и дополнительную работу.

    Отношение полезной работы к полной работе или полезной мощ­ности ко всей затраченной мощности называется коэффициентом по­лезного действия (КПД):

    Полезная работа (мощность) расходуется на движение с задан­ной скоростью и определяется по формулам:

    Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.

    Чем выше КПД, тем совершеннее машина.

    Примеры решения задач

    Пример 1. Определить потребную мощность мотора лебедки для подъема груза весом 3 кН на высоту 10 м за 2,5 с (рис. 16.3). КПД механизма лебедки 0,75.

    Решение

    1. Мощность мотора используется на подъем груза с заданной скоростью и преодоление вредных сопротивлений механизма лебедки.

    Полезная мощность определяется по формуле

    Р = Fv cos α.

    В данном случае α = 0; груз движется поступательно.

    2. Скорость подъема груза

    3. Необходимое усилие равно весу груза (равномерный подъем).

    6. Полезная мощность Р = 3000 4 = 12 000 Вт.

    7. Полная мощность. затрачиваемая мотором,

    Пример 2. Судно движется со скоростью 56 км/ч (рис. 16.4). Двигатель развивает мощность 1200 кВт. Определить силу сопротивления во­ды движению судна. КПД машины 0,4.

    Решение

    1. Определяем полезную мощность, используемую на движение с заданной скоростью:

    2. По формуле для полезной мощности можно определить движущую силу судна с учетом условия α = 0. При равномерном дви­жении движущая сила равна силе сопротивления воды:

    Fдв = Fcопр.

    3. Скорость движения судна v = 36 * 1000/3600 = 10 м/с

    4. Сила сопротивления воды

    Сила сопротивления воды движению судна

    Fcопр. = 48 кН

    Пример 3. Точильный камень прижимается к обрабатываемой детали с силой 1,5 кН (рис. 16.5). Какая мощ­ность затрачивается на обработку детали, если коэффициент трения материала камня о деталь 0,28; деталь вращается со скоростью 100 об/мин, диаметр детали 60 мм.

    Решение

    1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:

    Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Ба­рабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка ра­ботала в течение t = 2 мин. Определить коэффициент по­лезного действия наклонной плоскости.

    Решение

    Как известно,

    где А п.с. - полезная работа; А дв - работа движущих сил.

    В рассматриваемом примере полезная работа - работа силы тяжести

    Вычислим работу движущих сил, т. е. работу вра­щающего момента на выходном валу лебедки:

    Угол поворота барабана лебедки определяется по уравнению равномерного вращения:

    Подставив в выражение работы движущих сил число­вые значения вращающего момента М и угла поворота φ , получим:

    Коэффициент полезного действия наклонной плоскости составит

    Контрольные вопросы и задания

    1. Запишите формулы для расчета работы при поступательном и вращательном движениях.

    2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.

    3. Колодочным тормозом останавливают барабан после отклю­чения двигателя (рис. 16.6). Определите работу торможения за 3 обо­рота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.

    4. Натяжение ветвей ременной передачи S 1 = 700 Н, S 2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.

    5. Запишите формулы для расчета мощности при поступатель­ном и вращательном движениях.

    6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.

    7. Определите общий КПД механизма, если при мощности дви­гателя 12,5 кВт и общей силе сопротивления движению 2 кН ско­рость движения 5 м/с.

    8. Ответьте на вопросы тестового задания.


    Тема 1.14. Динамика. Работа и мощность



    Определение

    Мощность - это физическая величина, которую использует как основную характеристику любого устройства, которое применяют для совершения работы. Полезная мощность может быть использована для выполнения поставленной задачи.

    Отношение работы ($\Delta A$) к промежутку времени за которое она выполнена ($\Delta t$) называют средней мощностью ($\left\langle P\right\rangle $) за это время:

    \[\left\langle P\right\rangle =\frac{\Delta A}{\Delta t}\left(1\right).\]

    Мгновенной мощностью или чаще просто мощностью называют предел отношения (1) при $\Delta t\to 0$:

    Приняв во внимание, что:

    \[\Delta A=\overline{F}\cdot \Delta \overline{r\ }\left(3\right),\]

    где $\Delta \overline{r\ }$ - перемещение тела под действием силы $\overline{F}$, в выражении (2) имеем:

    где $\ \overline{v}-$ мгновенная скорость.

    Коэффициент полезного действия

    При выполнении необходимой (полезной) работы, например, механической, приходится выполнять работу большую по величине, так как в реальности существуют силы сопротивления и часть энергии подвержена диссипации (рассеиванию). Эффективность совершения работы определяется при помощи коэффициента полезного действия ($\eta $), при этом:

    \[\eta =\frac{P_p}{P}\left(5\right),\]

    где $P_p$ - полезная мощность; $P$ - затраченная мощность. Из выражения (5) следует, что полезная мощность может быть найдена как:

    Формула полезной мощности источника тока

    Пусть электрическая цепь состоит из источника тока, имеющего сопротивление $r$ и нагрузки (сопротивление $R$). Мощность источника найдем как:

    где $?$ - ЭДС источника тока; $I$ - сила тока. При этом $P$ - полная мощность цепи.

    Обозначим $U$ - напряжение на внешнем участке цепи, тогда формулу (7) представим в виде:

    где $P_p=UI=I^2R=\frac{U^2}{R}(9)$ - полезная мощность; $P_0=I^2r$ - мощность потерь. При этом КПД источника определяют как:

    \[\eta =\frac{P_p}{P_p+P_0}\left(9\right).\]

    Максимальную полезную мощность (мощность на нагрузке) электрический ток дает, если внешнее сопротивление цепи будет равно внутреннему сопротивлению источника тока. При этом условии полезная мощность равна 50\% общей мощности.

    При коротком замыкании (когда $R\to 0;;U\to 0$) или в режиме холостого хода $(R\to \infty ;;I\to 0$) полезная мощность равна нулю.

    Примеры задач с решением

    Пример 1

    Задание. Коэффициент полезного действия электрического двигателя равен $\eta $ =42%. Какой будет его полезная мощность, если при напряжении $U=$110 В через двигатель идет ток силой $I=$10 А?

    Решение. За основу решения задачи примем формулу:

    Полную мощность найдем, используя выражение:

    Подставляя правую часть выражения (1.2) в (1.1) находим, что:

    Вычислим искомую мощность:

    Ответ. $P_p=462$ Вт

    Пример 2

    Задание. Какова максимальная полезная мощность источника тока, если ток короткого замыкания его равен $I_k$? При соединении с источником тока сопротивления $R$, по цепи (рис.1) идет ток силой $I$.

    Решение. По закону Ома для цепи с источником тока мы имеем:

    где $\varepsilon$ - ЭДС источника тока; $r$ - его внутреннее сопротивление.

    При коротком замыкании считаем, что сопротивление внешней нагрузки равно нулю ($R=0$), тогда сила тока короткого замыкания равна:

    Максимальная полезная мощность в цепи рис.1 электрический ток даст, при условии:

    Тогда сила тока в цепи равна:

    Максимальную полезную мощность найдем, используя формулу:

    Мы получили систему из трех уравнений с тремя неизвестными:

    \[\left\{ \begin{array}{c} I"=\frac{\varepsilon}{2r}, \\ I_k=\frac{\varepsilon}{r}, \\ P_{p\ max}={\left(I"\right)}^2r \end{array} \left(2.6\right).\right.\]

    Используя первое и второе уравнения системы (2.6) найдем $I"$:

    \[\frac{I"}{I_k}=\frac{\varepsilon}{2r}\cdot \frac{r}{\varepsilon}=\frac{1}{2}\to I"=\frac{1}{2}I_k\left(2.7\right).\]

    Используем уравнения (2.1) и (2.2) выразим внутреннее сопротивление источника тока:

    \[\varepsilon=I\left(R+r\right);;\ I_kr=\varepsilon \to I\left(R+r\right)=I_kr\to r\left(I_k+I\right)=IR\to r=\frac{IR}{I_k-I}\left(2.8\right).\]

    Подставим результаты из (2.7) и (2.8) в третью формулу системы (2.6), искомая мощность будет равна:

    Ответ. $P_{p\ max}={\left(\frac{1}{2}I_k\right)}^2\frac{IR}{I_k-I}$

    Загрузка...