Интерфейс. Браузеры. Камеры. Программы. Образование. Социальные сети

Переработка фотополимерных форм. Фотополимерная печатная форма. Пластина для цифровой передачи информации

Существенным фактором развития флексографской печати стало внедрение фотополимерных печатных форм. Их применение началось в 60-е годы, когда фирма «Дюпон» представила на рынок первые пластины для высокой печати «Дайкрил». Однако во флексо их можно было использовать для изготовления оригинальных клише, с которых делали матрицы, а затем резиновые формы методом прессования и вулканизации. С тех пор многое изменилось. . .

Способы изготовления

Сегодня на мировом рынке флексографской печати наиболее известны следующие производители фотополимерных пластин и композиций: BASF, DUPONT, Oy Pasanen & Co и др. Благодаря использованию высокоэластичных форм, данным способом возможна печать на различных материалах при создании минимального давления в зоне печатного контакта (речь идет о давлении, которое создается печатным цилиндром). К числу таковых относятся бумага, картон, гофрокартон, различные синтетические пленки (полипропилен, полиэтилен, целлофан, полиэтилентерефталат лавсан и др.), металлизированная фольга, комбинированные материалы (самоклеящиеся бумага и пленка). Флексографский способ используется преимущественно в сфере производства упаковки, а также находит применение при изготовлении издательской продукции. Например, в США и Италии около 40% от общего числа всех газет запечатываются флексографским способом на специальных флексографских газетных агрегатах.

Существует два типа формного материала для изготовления флексографских форм: резиновый и полимерный. Изначально формы изготавливались на основе резинового материала, и качество их было низким, что делало, в свою очередь, низким качество оттисков флексографской печати в целом. В 70-х годах нашего столетия впервые была представлена фотополимеризующаяся (фотополимерная) пластина в качестве формного материала для флексографского способа печати. Пластина позволяла воспроизводить высоколиниатурные изображения до 60 лип/см и выше, а также линии толщиной от 0,1 мм; точки диаметром от 0,25 мм; текст как позитивный, так и негативный от 5 пиксел и растровые 3-, 5- и 95 - процентные точки; тем самым позволив флексографии составлять конкуренцию «классическим» способам, особенно в сфере печати на упаковке. И, естественно, фотополимерные пластины заняли лидирующее положение в качестве формного флексографского материала, особенно в Европе и в нашей стране.

Резиновые (эластомерные) печатные формы могут быть получены способом» прессования и гравирования. Необходимо отметить, что сам формный процесс на основе эластомеров трудоемок и не экономичен. Максимально воспроизводимая линиатура составляет порядка 34 лин/см, т.е. репродукционные возможности данных пластин находятся на низком уровне и не отвечают современным требованиям к упаковке.

Фотополимерные формы позволяют воспроизводить как сложные цветовые и переходы, различные тональности, так и растровые изображения с линиатурой до 60 лин/см при довольно-таки небольшом растаскивании (увеличении тоновых градаций). В настоящее время, как правило, фотополимерные формы изготавливаются двумя способами: аналоговым — посредством экспонирования УФ-излучения через негатив и удаления незаполимеризованного полимера с пробелов при помощи специальных вымывных растворов на основе органических спиртов и углеводородов (например, при помощи вымывного раствора фирмы BASF Nylosolv II) и посредством так называемого цифрового способа, т. е. лазерного экспонирования специального черного слоя, нанесенного поверх фотополимерного, и последующего вымывания не проэкспонированных участков. Стоит отметить, что в последнее время в этой области появились новые разработки фирмы BASF, позволяющие удалять полимер в случае аналоговых пластин при помощи обыкновенной воды; или же напрямую удалять полимер с пробелов при помощи лазерного гравирования в случае цифрового способа изготовления форм.

Основой фотополимерной пластины любого типа (как аналоговой, так и цифровой) является фотополимерный, или так называемый рельефный слой, благодаря которому и происходит образование возвышающихся печатающих и углубленных пробельных элементов, т. е. рельефа. Основой фотополимерного слоя является фотополимеризующаяся композиция (ФПК). Основными компонентами ФПК, оказывающими значительное влияние на печатно-технические характеристики и качество фотополимерных печатных форм, являются следующие вещества.

1) Мономер — соединение сравнительно невысокого молекулярного веса и низкой вязкости, содержащее двойные связи и, следовательно, способное к полимеризации. Мономер является растворителем или разбавителем для остальных компонентов композиции. Изменяя содержание мономера, обычно регулируют вязкость системы.

2) 0лигомер — способное к полимеризации и к сополимеризации с мономером ненасыщенное соединение большего, чем мономер, молекулярного веса. Это вязкие жидкости либо твердые вещества. Условием их совместимости с мономером является растворимость в последнем. Считается, что свойства получаемых при отверждении покрытий (например, фотополимерных печатных форм) определяются главным образом природой олигомера.

В качестве олигомеров и мономеров наибольшее распространение находят олигоэ-фир- и олигоуретанакрилаты, а также различные ненасыщенные полиэфиры.

3) Фотоинициатор. Полимеризация винильных мономеров под действием УФ-излучения в принципе может протекать без участия каких-либо других соединений. Такой процесс называется просто полимеризацией и протекает довольно медленно. Для ускорения реакции в композицию вводят небольшие количества веществ (от долей процента до процентов), способных под действием света генерировать свободные радикалы и/или ионы, инициирующие цепную реакцию полимеризации.

Такой тип полимеризации называется фотоинициированной полимеризацией. Несмотря на незначительное содержание фотоинициатора в композиции, ему принадлежит исключительно важная роль, определяющая как многие характеристики процесса отверждения (скорость фотополимеризации, широту экспонирования), так и свойства полученных покрытий. В качестве фотоинициаторов находят применение производные бензофенона, антрахинона, тиоксантона, асцилфосфиноксиды, пероксипроизводные и т. д.

The best from the BASF

Фирма BASF Drucksysteme GmbH (Германия) является одним из ведущих изготовителей самого широкого в мире ассортимента фотополимерных пластин для высокой, глубокой и флексографской печати.

Для флексографии BASF предлагает серию пластин nyloflex, которая включает в себя: пластины для печати на этикетках (nyloflex FAE I, FAH, FAR II, MA III, ACE), пластины для прямой печати на гофрокартоне (nyloflex FAC-X и FAII), пластину для запечатки колбасных оболочек (nyloflex ME), пластину для цифровой передачи информации (digiflex II), пластину для печати УФ-красками (nyloflex Sprint) и пластину для прямой лазерной гравировки (nyloflex LD).

Пластина для печати на этикетках — nyloflex АСЕ

Пластина nyloflex АСЕ предназначена для высококачественной растровой флексографской печати в таких областях, как:

  • - гибкая упаковка из пленки и бумаги;
  • - упаковка для напитков;
  • - этикетки;
  • - предварительное запечатывание поверхности гофрокартона.

Имеет наибольшую твердость среди всех пластин nyloflex — 62° Shore А (шкалы по Шору А).

Основные достоинства:

  • - изменение цвета пластины при экспонировании — сразу же видна разница между экспонированными / не проэкспонированными участками пластины;
  • - большая широта экспозиций обеспечивает хорошее закрепление растровых точек и чистые углубления на выворотках, маскирование не требуется;
  • - короткое время обработки (экспонирование, вымывание, завершающая обработка) экономит рабочее время;
  • - широкий интервал тоновых градаций на печатной форме позволяет одновременно печатать растровые и штриховые элементы;
  • - хороший контраст печатных элементов облегчает монтаж;
  • - качественный краскоперенос (особенно при использовании водных красок) позволяет равномерно воспроизвести растр и плашку, а снижение необходимого объема переносимой краски делает возможным печать плавных растровых переходов;
  • - высокая твердость при хорошей стабильности, передача высоколиниатурных растровых переходов при использовании технологии «тонких печатных форм» в сочетании с компрессионными подложками;
  • - устойчивость к износу, высокая тираже-стойкость;
  • - устойчивость к озону предотвращает образование трещин.

Пластина показывает прекрасный краскоперенос, особенно при использовании красок на водной основе. Кроме того, она хорошо подходит для печати на шероховатых материалах.

Nyloflex АСЕ могут поставляться следующей толщины:

АСЕ 114-1,14 мм АСЕ 254-2,54 мм

АСЕ 170-1,70 мм АСЕ 284-2,84 мм

FAC-X — пластина для печати на гофрокартоне

Пластина имеет небольшую твердость (33° по Шору А), что обеспечивает ее хороший контакт с шероховатой и неровной поверхностью гофрокартона и сводит к минимуму эффект «стиральной доски». Одно из главных достоинств FAC-X — прекрасный краскоперенос, особенно для красок на водной основе, используемых при печати на гофрокартоне. Равномерная пропечатка плашек без высокого давления печати способствует уменьшению прироста градаций (растискиванию) при растровой печати и повышению контрастности изображения в целом.

Кроме того, пластина имеет ряд других отличительных особенностей:

  • - фиолетовый оттенок полимера и высокая прозрачность подложки облегчает контроль изображений и монтаж форм, при помощи липких лент, на формный цилиндр; — высокая прочность пластины на изгиб исключает отслаивание полиэфирной подложки и защитной пленки;
  • - форма хорошо очищается как до, так и после печати.

Пластина nyloflex FAC-X является однослойной. Она состоит из светочувствительного фотополимерного слоя, нанесённого для стабильности размеров на полиэфирную подложку.

Nyloflex FAC-X поставляются толщиной 2,84 мм, 3,18 мм, 3,94 мм, 4,32 мм, 4,70 мм, 5,00 мм, 5,50 мм, 6,00 мм, 6,35 мм.

Глубина рельефа пластин nyloflex FAC-X устанавливается предварительным экспонированием обратной стороны пластины на 1 мм для пластин толщиной 2,84 мм и 3,18 мм и в интервале от 2 до 3,5 мм (в зависимости от каждого конкретного случая) для пластин толщиной от 3,94 мм до 6,35 мм.

С пластинами nyloflex FAC-X можно получать линиатуру растра до 48лин/см и интервал градаций 2-95% (для пластин толщиной 2,84 мм и 3,18 мм) и линиатуру растра до 40 лин/см и интервал градаций 3-90% (для пластин толщиной от 3,94 мм до 6,35 мм). Выбор толщины пластины руководствуется как типом печатной машины, так и спецификой запечатываемого материала и воспроизводимого изображения.

Пластина для запечатки колбасных оболочек — nyloflex ME

Данный образец отличается от других многослойностью структуры. Пластина nyloflex ME предназначена для печати красками, содержащими сложные эфиры, а также для предварительной запечатки пленок двухкомпонентной белой краской.

К ее достоинствам относятся отличный краскоперенос, высокая тиражестойкость, короткое время вымывания, широкий интервал экспозиций и хорошая устойчивость к набуханию при использовании любых красок.

Пластина nyloflex ME состоит из светочувствительного фотополимерного слоя, нанесенного на стабилизирующую пленку, которая, в свою очередь, нанесена на эластичную подложку. Поставляются пластины толщиной 2,75 мм.

Глубина рельефа пластин nyloflex ME

задается толщиной рельефного слоя. Рельеф вымывается до стабилизирующей пленки. Глубина рельефа всегда составляет порядка 0,7 мм. С пластинами nyloflex ME можно получать линиатуру растра до 60 лин/см с интервалом градаций от 2 до 95%.

Большой интервал экспозиций способствует отличному закреплению таких элементов рельефа, как линии шириной 55 мкм или 2-процентные растровые тона при глубине рельефа до 0,7 мм.

Nyloflex ME не требует маскирования. Информация, содержащаяся на негативе, до мельчайших деталей и с оптимальной передачей градаций передается на фотополимерную пластину nyloflex ME. Так, например, негативные элементы (выворотка) формируются открытыми, с хорошими промежуточными глубинами. Растровые участки копируются с крутыми углами кромок.

Пластина для цифровой передачи информации

Фотополимерная пластина digiflex II была разработана на основе первого поколения пластин digiflex и сочетает в себе все преимущества цифровой передачи информации и еще более простую и легкую обработку.

Преимущества пластины digiflex Ii:

1) отсутствие фотопленки, благодаря чему возможны прямая передача данных на печатную форму, охрана природы и экономия времени. После снятия защитной пленки на поверхности пластины становится видимым черный слой, чувствительный к лазерному излучению инфракрасного диапазона. Изображение и текстовая информация могут записываться непосредственно на этом слое с помощью лазера. В местах, на которые воздействует лазерный луч, черный слой разрушается. После этого печатная форма подвергается засветке УФ-лучами по всей площади, вымывается, сушится и происходит окончательная засветка.

2) оптимальная передача градаций, позволяющая воссоздать малейшие оттенки изображения и обеспечивающая высокое качество печати;

3) низкие монтажные затраты;

4) высочайшее качество печати. Основу экспонируемых лазером фотополимерных печатных форм составляют печатные формы nyloflex FАН для высокохудожественной растровой флексографской печати, которые покрываются черным слоем. Лазерное и последующее обычное экспонирование выбираются таким образом, что достигается существенно более низкие приращения градаций. Получаются результаты печати исключительно высокого качества.

5) уменьшенная нагрузка на окружающую среду. Отсутствует обработка пленок не используются химические составы для фотообработки, замкнутые узлы экспонирования и вымывания с замкнутыми устройствами регенерации приводят к уменьшению вредного влияния на природу.

Область применения пластин для цифровой передачи информации широка. Это бумажные и пленочные мешки, гофрированный картон, пленки для автоматов, гибкие упаковки, алюминиевая фольга, пленочные пакеты, этикетки, конверты, салфетки, упаковка для напитков, картонажные изделия.

Пластина для печати УФ-красками — nyloflex Sprint

Nyloflex Sprint — новая для российского рынка пластина из серии nyloflex. В настоящий момент проходит испытания на ряде производственных полиграфических предприятий России.

Это специальная водовымывная пластина для печати УФ-красками. Вымывание при помощи обыкновенной воды имеет смысл не только с позиции защиты природы, при этом еще значительно сокращается время на обработку по сравнению с технологией использующей органический вымывной раствор. Пластина nyloflex sprint требует всего 35-40 мин на весь процесс лишения печатной формы. Вследствие того, что для вымывания нужна только чистая вода, nyloflex sprint позволяет экономить и на дополнительных операциях, ведь использованная вода может вылиться прямо в канализацию без фильтрации или дополнительной очистки. А тем, кто уже работает с водовымывными пластинами и процессорами nyloprint для изготовления форм высокой печати, даже не требуется покупки дополнительного оборудования.

Nyloflex sprint отличается очень хорошим краскопереносом, а также выдающимися результатами в области высококачественной штриховой и растровой печати. Ее областями применения являются гибкая упаковка, пакеты и этикетки.

С разрешением до 60 лин/см четко пропечатываются даже самые тонкие линии и мелкие шрифты. Идеально печатает nyloflex sprint на всех гладких материалах, например, на пакетах, этикетках или гибких упаковках из пленки. Для изготовления истины необходимы обычные этапы как ори аналоговом традиционном способе изготовления форм.

Пластина для прямой лазерной гравировки — lylollexLD

Пластина nyloflex LD была представлена фирмой BASF в мае с. г. на выставке Drupa в г. Дюссельдорфе. Эта последняя новинка, созданная BASF специально для прямой лазерной гравировки. В процессе обработки изображение и информация с помощью лазерной гравировки полимера наносятся прямо на пластину, минуя стадии предварительного экспонирования, вымывания, сушки и завершающей обработки.

Достоинства этой пластины — в сокращении этапов обработки, в качественном краскопереносе, контрастности печатных элементов, в высокой абразивной устойчивости и устойчивости к УФ-краскам и ти-ражестойкости.

На российском рынке пластина пока не применяется.

Конечный этап — печатная форма

Изготовление печатных форм происходит на формном оборудовании фирмы BASF и включает в себя следующие этапы:

1. Предварительное экспонирование обратной стороны пластины, которое определяет глубину рельефа и служит для лучшего закрепления мелких деталей рельефа.

2. Основное экспонирование — полимеризация печатного рельефа путем экспонирования УФ-света диапазона А длиной волны при 360 нм через матированный негатив под вакуумом.

3. Вымывание непроэкспонированных участков. В качестве вымывного раствора рекомендуется использовать не загрязняющий окружающую среду Nylosolv II. Однако для вымывания можно применять и любой другой раствор, присутствующий на рынке.

4. Сушка, в процессе которой улетучиваются остатки раствора, содержащиеся в печатной форме. Затем форма должна быть выдержана при комнатных условиях перед дальнейшей обработкой.

5. Дополнительное экспонирование, обеспечивающее гарантию полной полимеризации всех мелких деталей. Длительность соответствует времени основного экспонирования.

6. Завершающая обработка — облучение формы УФ-светом диапазона С, с длиной волны 254 нм для устранения липкости формы.

Необработанные пластины nyloflex хранятся в прохладном и сухом помещении при температуре от 15 до 20°С и относительной влажности воздуха около 55%.

При обработке фотополимерных пластин окна должны быть закрыты специальной пленкой для защиты от УФ-излучения солнца. Осветительные приборы в помещении также должны быть экранированы от УФ-излучения.

Изготовление печатных форм digiflex отличается от классического формного процесса наличием дополнительного этапа — испарения лазером маскирующего слоя пластины на специальном оборудовании (например, оборудовании Lazer Graver фирмы «Альфа»),

После этого пластина проходит обычные стадии предварительного экспонирования обратной стороны, основного экспонирования, вымывания, сушки, дополнительного экспонирования и завершающей обработки на формном оборудовании.

3. Изготовление форм высокой печати на основе фотополимерных композиций

Существенным фактором развития флексографской печати стало внедрение фотополимерных печатных форм. Их применение на­чалось в 60-е годы, когда фирма «Дюпон» предста­вила на рынок первые пла­стины для высокой печати «Дайкрил». Однако во флексо их можно было использовать для изготов­ления оригинальных кли­ше, с которых делали мат­рицы, а затем резиновые формы методом прессова­ния и вулканизации. С тех пор многое изменилось.

Сегодня на мировом рынке флек­сографской печати наиболее известны следующие произво­дители фотополимерных плас­тин и композиций: BASF, DUPONT, Oy Pasanen & Co и др. Благода­ря использованию высокоэластичных форм, данным способом возможна печать на различных материалах при создании минимального давления в зоне печатного контакта (речь идет о давлении, которое создается печатным цилиндром). К числу таковых относятся бумага, картон, гофро­картон, различные синтетические пленки (полипропилен, полиэтилен, целлофан, полиэтилентерефталат лавсан и др.), металлизированная фольга, комбинирован­ные материалы (самоклеящиеся бумага и пленка). Флексографский способ исполь­зуется преимущественно в сфере произ­водства упаковки, а также находит применение при изготовлении издательской продукции. Например, в США и Италии около 40% от общего числа всех газет за­печатываются флексографским способом на специальных флексографских газет­ных агрегатах.

Существует два типа формного материа­ла для изготовления флексографских форм: резиновый и полимерный. Изначально фор­мы изготавливались на основе резинового материала, и качество их было низким, что делало, в свою очередь, низким качество оттисков флексографской печати в целом. В 70-х годах нашего столетия впервые была представлена фотополимеризующаяся (фо­тополимерная) пластина в качестве форм­ного материала для флексографского спо­соба печати. Пластина позволяла воспро­изводить высоколиниатурные изображения до 60 лип/см и выше, а также линии тол­щиной от 0,1 мм; точки диаметром от 0,25 мм; текст как позитивный, так и нега­тивный от 5 пиксел и растровые 3-, 5- и 95 - процентные точки; тем самым позволив флексографии составлять конкуренцию «классическим» способам, особенно в сфере печати на упаковке. И, естественно, фотополимерные пластины заняли лидирующее положение в качестве формного флексографского материала, особенно в Европе и в нашей стране.

Резиновые (эластомерные) печатные формы могут быть получены способом» прессования и гравирования. Необходимо отметить, что сам формный процесс на основе эластомеров трудоемок и не экономичен. Максимально воспроизводимая линиатура составляет порядка 34 лин/см, т.е. репродукционные возможности данных пластин находятся на низком уровне и не отвечают современным требованиям к упаковке. Фотополимерные формы позволяют воспроизводить как сложные цветовые и переходы, различные тональности, так и растровые изображения с линиатурой до 60 лин/см при довольно-таки небольшом растаскивании (увеличении тоновых града­ций). В настоящее время, как правило, фотополимерные формы изготавливаются двумя способами: аналоговым - посредством экспонирования УФ-излучения че­рез негатив и удаления незаполимеризованного полимера с пробелов при помощи специальных вымывных растворов на осно­ве органических спиртов и углеводородов (например, при помощи вымывного раство­ра фирмы BASF Nylosolv II) и посредством так называемого цифрового способа, т. е. лазерного экспонирования специального черного слоя, нанесенного поверх фотопо­лимерного, и последующего вымывания не проэкспонированных участков. Стоит от­метить, что в последнее время в этой обла­сти появились новые разработки фирмы BASF, позволяющие удалять полимер в случае аналоговых пластин при помощи обыкновенной воды; или же напрямую уда­лять полимер с пробелов при помощи лазерного гравирования в случае цифрового способа изготовления форм.

Основой фотополимерной пластины лю­бого типа (как аналоговой, так и цифровой) является фотополимерный, или так назы­ваемый рельефный слой, благодаря которо­му и происходит образование возвышаю­щихся печатающих и углубленных про­бельных элементов, т. е. рельефа. Основой фотополимерного слоя является фотополимеризующаяся композиция (ФПК). Основ­ными компонентами ФПК, оказывающими значительное влияние на печатно-технические характеристики и качество фотопо­лимерных печатных форм, являются следу­ющие вещества.

1) Мономер - соединение сравнительно невысокого молекулярного веса и низкой вязкости, содержащее двойные связи и, следовательно, способное к полимериза­ции. Мономер является растворителем или разбавителем для остальных компонентов композиции. Изменяя содержание мономе­ра, обычно регулируют вязкость системы.

2) Олигомер - способное к полимериза­ции и к сополимеризации с мономером ненасыщенное соединение большего, чем мо­номер, молекулярного веса. Это вязкие жидкости либо твердые вещества. Услови­ем их совместимости с мономером являет­ся растворимость в последнем. Считается, что свойства получаемых при отверждении покрытий (например, фотополимерных пе­чатных форм) определяются главным обра­зом природой олигомера.

В качестве олигомеров и мономеров наи­большее распространение находят олигоэ-фир- и олигоуретанакрилаты, а также раз­личные ненасыщенные полиэфиры.

3) Фотоинициатор. Полимеризация винильных мономеров под действием УФ-из­лучения в принципе может протекать без участия каких-либо других соединений. Такой процесс называется просто полиме­ризацией и протекает довольно медленно. Для ускорения реакции в композицию вво­дят небольшие количества веществ (от до­лей процента до процентов), способных под действием света генерировать свободные радикалы и/или ионы, инициирующие цеп­ную реакцию полимеризации. Такой тип полимеризации называется фотоинициированной полимеризацией. Несмотря на не­значительное содержание фотоинициатора в композиции, ему принадлежит исключи­тельно важная роль, определяющая как многие характеристики процесса отверж­дения (скорость фотополимеризации, ши­роту экспонирования), так и свойства по­лученных покрытий. В качестве фотоини­циаторов находят применение производные бензофенона, антрахинона, тиоксантона, асцилфосфиноксиды, пероксипроизводные и т. д.

Пластина nyloflex АСЕ предназначена для высококачественной растровой флексографской печати в таких областях, как:

Гибкая упаковка из пленки и бумаги;

Упаковка для напитков;

Этикетки;

Предварительное запечатывание поверх­ности гофрокартона.

Имеет наибольшую твердость среди всех пластин nyloflex - 62° Shore А (шкалы по Шору А). Основные достоинства:

Изменение цвета пластины при экспони­ровании - сразу же видна разница между экспонированными / не проэкспонированными участками пластины;

Большая широта экспозиций обеспечива­ет хорошее закрепление растровых точек и чистые углубления на выворотках, мас­кирование не требуется;

Короткое время обработки (экспонирова­ние, вымывание, завершающая обработка) экономит рабочее время;

Широкий интервал тоновых градаций на печатной форме позволяет одновременно печатать растровые и штриховые элемен­ты;

Хороший контраст печатных элементов облегчает монтаж;

Качественный краскоперенос (особенно при использовании водных красок) позволяет равномерно воспроизвести растр и плашку, а снижение необходимого объема переносимой краски делает возможным печать плавных растровых переходов;

Высокая твердость при хорошей стабиль­ности, передача высоколиниатурных растровых переходов при использовании тех­нологии «тонких печатных форм» в сочетании с компрессионными подложками;

Устойчивость к износу, высокая тираже-стойкость;

Устойчивость к озону предотвращает об­разование трещин.

Пластина показывает прекрасный крас­коперенос, особенно при использовании красок на водной основе. Кроме того, она хорошо подходит для печати на шерохова­тых материалах.

Nyloflex АСЕ могут поставляться следу­ющей толщины:

АСЕ 114-1,14 мм АСЕ 254-2,54 мм

АСЕ 170-1,70 мм АСЕ 284-2,84 мм

Пластина имеет небольшую твердость (33° по Шору А), что обеспечивает ее хороший контакт с шероховатой и неровной поверхностью гофрокартона и сводит к минимуму эффект «стиральной доски». Одно из главных достоинств FAC-X - прекрасный краскоперенос, особенно для красок на водной основе, используемых при печати на гофрокартоне. Равномер­ная пропечатка плашек без высокого дав­ления печати способствует уменьшению прироста градаций (растискиванию) при растровой печати и повышению контраст­ности изображения в целом. Кроме того, пластина имеет ряд других отличительных особенностей:

Фиолетовый оттенок полимера и высокая прозрачность подложки облегчает конт­роль изображений и монтаж форм, при по­мощи липких лент, на формный цилиндр; - высокая прочность пластины на изгиб ис­ключает отслаивание полиэфирной под­ложки и защитной пленки;

Форма хорошо очищается как до, так и после печати.

Пластина nyloflex FAC-X является одно­слойной. Она состоит из светочувствительного фотополимерного слоя, нанесённого для стабильности размеров на полиэфир­ную подложку.

Nyloflex FAC-X поставляются толщиной 2,84 мм, 3,18 мм, 3,94 мм, 4,32 мм, 4,70 мм, 5,00 мм, 5,50 мм, 6,00 мм, 6,35 мм.

Глубина рельефа пластин nyloflex FAC-X устанавливается предварительным экспонированием обратной стороны плас­тины на 1 мм для пластин толщиной 2,84 мм и 3,18 мм и в интервале от 2 до 3,5 мм (в зависимости от каждого конкрет­ного случая) для пластин толщиной от 3,94 мм до 6,35 мм.

С пластинами nyloflex FAC-X можно по­лучать линиатуру растра до 48лин/см и интервал градаций 2-95% (для пластин толщиной 2,84 мм и 3,18 мм) и линиатуру растра до 40 лин/см и интервал градаций 3-90% (для пластин толщиной от 3,94 мм до 6,35 мм). Выбор толщины пластины ру­ководствуется как типом печатной маши­ны, так и спецификой запечатываемого ма­териала и воспроизводимого изображения.

Фотополимерная пластина digiflex II была разработана на основе первого поколения пластин digiflex и сочетает в себе все пре­имущества цифровой передачи информа­ции и еще более простую и легкую обра­ботку. Преимущества пластины digiflex Ii:

1) отсутствие фотопленки, благодаря чему возможны прямая передача данных на пе­чатную форму, охрана природы и экономия времени. После снятия защитной пленки на поверхности пластины становится види­мым черный слой, чувствительный к лазер­ному излучению инфракрасного диапазона. Изображение и текстовая информация могут записываться непосредственно на этом слое с помощью лазера. В местах, на которые воздействует лазерный луч, черный слой разрушается. После этого печатная форма подвергается засветке УФ-лучами по всей площади, вымывается, сушится и происходит окончательная засветка.

2) оптимальная передача градаций, позволяющая воссоздать малейшие оттенки изображения и обеспечивающая высокое качество печати;

3) низкие монтажные затраты;

4) высочайшее качество печати. Основу экспонируемых лазером фотополимерных печатных форм составляют печатные формы nyloflex FАН для высокохудожественной растровой флексографской печати, которые покрываются черным слоем. Лазерное и последующее обычное экспонирование выбираются таким образом, что достигается существенно более низкие приращения градаций. Получаются результаты печати исключительно высокого качества.

5) уменьшенная нагрузка на окружающую среду. Отсутствует обработка пленок не используются химические составы для фотообработки, замкнутые узлы экспонирования и вымывания с замкнутыми устройствами регенерации приводят к уменьшению вредного влияния на природу.

Область применения пластин для цифровой передачи информации широка. Это бумажные и пленочные мешки, гофрированный картон, пленки для автоматов, гибкие упаковки, алюминиевая фольга, пленочные пакеты, этикетки, конверты, салфетки, упаковка для напитков, картонажные изделия.

Nyloflex Sprint - новая для российского рынка пластина из серии nyloflex. В настоящий момент проходит испытания на ряде производственных полиграфических предприятий России. Это специальная водовымывная пластина для печати УФ-красками. Вымывание при помощи обыкновенной воды имеет смысл не только с позиции защиты природы, при этом еще значительно сокращается время на обработку по сравнению с технологией использующей органический вымывной раствор. Пластина nyloflex sprint требует всего 35-40 мин на весь процесс лишения печатной формы. Вследствие того, что для вымывания нужна только чистая вода, nyloflex sprint позволяет экономить и на дополнительных операциях, ведь использованная вода может вылиться прямо в канализацию без филь­трации или дополнительной очистки. А тем, кто уже работает с водовымывными пластинами и процессорами nyloprint для изготовления форм высокой печати, даже не требуется покупки дополнительного обо­рудования.

), печатающие элементы которой получают в результате действия света на полимерную композицию (т. н. фотополимерную композицию – ФПК). Эти композиции представляют собой твёрдые или жидкие (текучие) полимерные материалы, которые под действием интенсивного источника света становятся нерастворимыми в обычных для них растворителях, жидкие ФПК переходят в твёрдое состояние, а твёрдые дополнительно полимеризуются. В состав ФПК, кроме полимера (полиамид, полиакрилат, эфир целлюлозы, полиуретан и т.п.), входит в небольших количествах фотоинициатор (например, бензоин). Ф. п. ф. из твёрдых композиций впервые появились в конце 50-х гг. 20 в. в США, а спустя несколько лет в Японии стали применяться Ф. п. ф. из жидких композиций.

Для изготовления Ф. п. ф. из твёрдых ФПК используют тонкие алюминиевые или стальные листы с нанесённым на них слоем ФПК толщиной 0,4–0,5 мм. Процесс получения Ф. п. ф. состоит из экспонирования негатива, вымывания незаполимеризовавшегося слоя в пробельных участках и сушки готовой формы.

Для изготовления Ф. п. ф. из жидких ФПК в специальное устройство (например, кювета из прозрачного бесцветного стекла) помещают негатив, закрывают его прозрачной тонкой бесцветной плёнкой и заливают ФПК. После этого производят экспонирование с двух сторон, в результате чего со стороны негатива образуются заполимеризовавшиеся (твёрдые) печатающие элементы, а с противоположной стороны – подложка формы. Затем струей растворителя вымывают незаполимеризовавшуюся композицию с пробельных элементов и высушивают готовую форму.

Ф. п. ф. (часто называемые полноформатными гибкими формами) применяются для печатания журналов и книг, в том числе с цветными иллюстрациями. Они просты в изготовлении, имеют небольшую массу, высокую тиражеустойчивость (до 1 млн. оттисков), позволяют широко использовать фотонабор и не требуют больших затрат времени на подготовительные операции при печатании тиража.

Лит.: Синяков Н. И., Технология изготовления фотомеханических печатных форм, 2 изд., М., 1974.

Н. Н. Полянский.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Фотополимерная печатная форма" в других словарях:

    фотополимерная печатная форма - Рельефная печатная форма, изготовленная на основе фотополимеризующихся материалов. Тематики полиграфия …

    Фотополимерная печатная форма - печ. форма высокой печати из фотополимера высокомолекулярного органического вещества, обладающего светочувствительностью с высоким разрешением и пригодного для копирования на него негатива. После экспонирования и вымывания растворения спец.… … Издательский словарь-справочник

    фотополимерная печатная форма - Рельефная печатная форма, изготовленная на основе фотополимеризующихся материалов …

    Носитель текстовой и изобразит. информации, служащий для многократного получения оттисков; содержит печатающие (дающие оттиски краски на запечатываемом материале) и пробельные (непечатающие) элементы. Взаимное расположение печатающих и пробельных … Большой энциклопедический политехнический словарь

    Фотография - – (греч. – светопись) совокупность методов получения стабильных во времени изображений предметов и оптических сигналов на светочувствительных слоях (СЧС) путем закрепления фотохимических или фотофизических изменений, возникающих в СЧС под… … Энциклопедический словарь СМИ

    - (от Цинк и...графия) фотомеханический процесс изготовления Клише (иллюстрационных форм высокой печати) путём фотографического переноса изображения на цинковую или иную пластину, поверхность которой затем подвергается травлению кислотой в … Большая советская энциклопедия

    Флексографическая печать(флексография, флексопечать) это способ высокой печати с использованием гибких резиновых форм и быстровысыхающих жидких красок. В основу термина «флексография» были положены латинское слово flexibilis, что значит… … Википедия

    формный цилиндр - Один из цилиндров печатного аппарата ротационной печатной (листовой или рулонной) машины, на котором укрепляется печатная форма – офсетная, фотополимерная, стереотипная и др. В печатных машинах глубокой ротационной печати пробельные и печатающие… … Краткий толковый словарь по полиграфии

    формный цилиндр - Один из цилиндров печатного аппарата ротационной печатной (листовой или рулонной) машины, на котором укрепляется печатная форма офсетная, фотополимерная, стереотипная и др. В печатных машинах глубокой ротационной печати пробельные и печатающие… … Справочник технического переводчика

Флексография - разновидность высокой печати, характеризующаяся применением эластичных печатных форм и маловязких быстросохнущих красок.

Эластичные печатные формы имеют значительные преимущества перед жесткими формами: возможность печатания при небольшом давлении печати на различных, в том числе невпитывающих материалах (бумага, картон, пленки, пластики, целафан, металл и пр.). При этом они отличаются высокой тиражестойкостью, свыше 1 млн. экземпляров.

На современный момент определены три основных области применения флексографских форм:

  • · формы для запечатывания гибкой упаковки;
  • · формы для запечатывания картона, гофрокартона и материалов с шероховатой поверхностью;
  • · формы для лакирования офсетных оттисков.

Тонкие формы используют для высококачественной растровой флексографской печати, более толстые с глубоким рельефом - для запечатывания гофрокартона.

Формы предназначены для печатания флексографскими красками на спиртовой или водной основе, УФ - красками и лаками. Они совместимы с масляными красками и агрессивными растворителями, например ацетатами или кетонами.

Способ изготовления фотополимерных флексографских форм основан на том же принципе, что и способ получения обычных фотополимерных форм высокой печати т. е. формирование печатающих элементов путем полимеризации материала под действием излучения, и удаления не затвердевшей массы на участках образования пробельных.

Существует два направления производства фотополимерных флексографских форм: из твердых материалов и из жидких.

Изготовление фотополимерных флексографских форм из твердых материалов. В качестве твердого материала используют пластину, произведенную в промышленных условиях, которая состоит нескольких слоев (рис 11): защитной пленки, разделительного слоя, полимерного слоя и полиэфирной пленки.

Рис. 11.

Полиэфирная основа и защитная пленка (т. е. крайние слои) предохраняют слой полимера от прямого контакта с окружающей средой.

При этом пластина остается гибкой и эластичной. Формат и толщина требуемой пластины определяется конструкцией печатной машины.

Для обычных фотополимерных форм в качестве оригинала используют негатив.

Процесс получения фотополимерных флексографских форм производится с использованием специализированного оборудования. Для экспонирования используются ртутные лампы УФ излучения с длиной волны 360 мм. Само экспонирование осуществляется в экспонирующем устройстве с вакуумной системой прижима негатива и формы друг к другу. Для удаления не затвердевших масс и сушки применяют вымывные и сушильные устройства

Процесс изготовления флексографской формы из твердых фотополимеризующихся материалов состоит из следующих этапов:

  • 1. Экспонирование оборотной стороны.
  • 2. Основное экспонирование (экспонирование изображения).
  • 3. Вымывание.
  • 4. Сушка.
  • 5. Дополнительная обработка светом.
  • 6. Дополнительное экспонирование.

Экспонирование оборотной стороны представляет собой воздействие УФ излучения на слой полимера через полиэфирную пленку - основу. Эта операция преследует несколько целей:

  • - определяется глубина рельефа для готовой печатной формы;
  • - из-за повышения светочувствительности сокращается продолжительность экспонирования изображения, в частности отдельно стоящих и мелких элементов изображения;
  • - повышается устойчивость печатающих элементов за счет прочного соединения с основанием рельефа и обеспечивается стабильная структура боковых граней;
  • - обеспечивается сцепление между полиэфирной основой и полимерным слоем;
  • - в процессе вымывания ограничивается впитывание растворителя и максимальная глубина вымывания.

Перед проведением основного экспонирования защитная пленка удаляется с поверхности формы. Негатив накладывают на пластину эмульсионной стороной. При проведении этой технологической операции на форме образуется позитивное рельефное изображение. Построение изображения начинается на поверхности формы и продвигается вниз в виде конуса, тем самым, обеспечивая идеальный, для форм высокой печати, профиль печатающих элементов с резкими границами и боковыми гранями.

При вымывании растворителем и обработке щетками удаляются незаполимеризованные участки формы. Остается рельеф с поверхностью, соответствующей прозрачным участкам негатива.

В процессе сушки испаряется растворитель, впитавшийся в форму во время вымывания. Форма приобретает нужную толщину, но поверхность остается достаточно липкой. Операцию сушки производят с использованием сушильных устройств.

После дополнительной обработки УФ лучами с длиной волны 254 мм и окончательного экспонирования УФ лучами с длиной волны 360 мм форма получает окончательную прочность и долговечность, за счет сшивания всех частей мономера. Дополнительную обработку проводят в специальных отделочных установках.

Изготовление фотополимерных флексографских форм из жидких материалов. Способ получения фотополимерных флексографских форм из жидких материалов не имеет принципиальных отличий от метода получения тех же форм из твердых пластин, кроме агрегатного состояния самого материала. Характерной особенностью этой технологии является использование специализированного для данного способа оборудования, каждый вид которого объединяет выполнение нескольких технологических операций:

  • 1. Устройство для нанесения слоя и экспонирования
  • 2. Устройство для удаления незаполимеризованного материала, вымывания, дополнительного экспонирования, дополнительной обработки, сушки.
  • 3. Резервуар для жидкого полимера.

Каждая из этих установок имеет варианты в зависимости от формата формы. Весь процесс ведется в полуавтоматическом режиме.

Изготовление фотополимерных флексографских форм с использованием лазерной и цифровой техники. Эта технология предусматривает использование пластин содержащих твердый фотополимеризующийся материал. Характерной особенностью, специально изготавливаемых для этого метода, формных пластин является наличие слоя, чувствительного к лазеру (рис 12).


Рис. 12.

Все процессы данной технологии не отличаются от технологии изготовления фотополимерных флексографских форм из твердых материалов, за исключением стадии основного экспонирования. Получение формы не предполагает использование негатива. Изображение с компьютера издательской системы передается в лазерное экспонирующее устройство. После удаления верхней защитной пленки, на слое чувствительном к лазеру выжигаются участки, соответствующие будущим печатным элементам - создается так называемая маска. Далее происходит экспонирование фотополимеризующегося слоя УФ лучами через маску. Маска имеет достаточно плотный контакт с фотополимеризующимся слоем, и использовать вакуум для дополнительного прижима не требуется. Последнее обстоятельство приводит к меньшему рассеянию УФ лучей и формированию более четких печатающих элементов, что несколько повышает качество изображения.

Выводим формы для флексографской печати

Докт. техн. наук, проф. МГУП им. Ивана Федорова

Разновидностью высокой печати, которая широко используется для печатания этикеток и упаковочной продукции из бумаги, фольги, полимерных пленок, а также для печатания газет, является флексография. Флексографская печать осуществляется с эластичных резиновых или высокоэластичных фотополимерных печатных форм текучими быстрозакрепляющимися красками.


В печатном аппарате флексографской печатной машины довольно жидкая краска наносится на печатную форму, закрепленную на формном цилиндре, не непосредственно, а через промежуточный накатной (анилоксовый) валик. Накатной валик выполнен из стальной трубы, которая может быть покрыта слоем меди. На эту поверхность методом травления или гравирования нанесена растровая сетка, углубленные ячейки которой делаются в виде пирамид с острой вершиной. Растровая поверхность анилоксового валика, как правило, хромируется. Передача краски из красочного ящика на печатную форму производится резиновым (дукторным) валиком на анилоксовый валик, а с него на печатающие элементы формы.

Использование упруго-эластичных печатных форм и маловязких быстрозакрепляющихся красок позволяет на высокой скорости запечатывать практически любой рулонный материал, воспроизводить не только штриховые элементы, но и одно- и многоцветные изображения (с линиатурой растрирования до 60 лин/см). Незначительное давление печатания обеспечивает бо льшую тиражестойкость печатных форм.

Флексография представляет собой прямой способ печати, при котором краска с формы переносится непосредственно на запечатываемый материал. В связи с этим изображение на печатающих элементах формы должно быть зеркально перевернуто по отношению к читаемому изображению на бумаге (рис. 1).

В современной флексографской печати используются фотополимерные печатные формы (ФПФ), которые не уступают офсетным по печатно-техническим и репродукционно-графическим свойствам, а по тиражестойкости, как правило, превосходят их.

В качестве фотополимерных материалов применяются твердые или жидкие фотополимеризуемые композиции. К ним относятся твердые или жидкие мономерные, олигомерные или мономерно-полимерные смеси, способные изменять под действием света химическое и физическое состояние. Эти изменения приводят к образованию твердых или упругих нерастворимых полимеров.

Твердые фотополимеризуемые композиции (ТФПК) сохраняют твердое агрегатное состояние до и после изготовления печатной формы. На полиграфическое предприятие они поставляются в виде формных фотополимеризуемых пластин определенного формата.

Структура фотополимеризуемых пластин для флексографской печати представлена на рис. 2.

Жидкие фотополимеризуемые композиции (ЖФПК) поставляются на полиграфические предприятия в емкостях в жидком виде либо их изготавливают непосредственно на предприятиях путем смешивания исходных компонентов.

Основной технологической операцией изготовления любых ФПФ, в ходе которой в фотополимеризуемой композиции протекает реакция фотополимеризации и образуется скрытое рельефное изображение, является экспонирование (рис. 3а ) фотополимеризуемого слоя. Фотополимеризация происходит только на тех участках слоя, которые подвергаются облучению УФ-лучами и только во время их воздействия. Поэтому для экспонирования используют негативные фотоформы и их аналоги в виде масочного слоя.

Рис. 3. Технологические операции получения фотополимерных печатных форм на твердых фотополимеризуемых пластинах: а — экспонирование; б — вымывание пробельных участков; в — сушка печатной формы; г — дополнительное экспонирование печатающих элементов

Проявление рельефного изображения, в результате которого удаляются незаполимеризовавшиеся участки фотополимеризуемой пластины, осуществляется их вымыванием спиртовым, щелочным раствором (рис. 3б ) или водой в зависимости от типа пластин, а для некоторых типов пластин — сухой термообработкой.

В первом случае экспонированная фотополимеризуемая пластина обрабатывается в так называемом сольвентном процессоре. В результате операции вымывания (см. рис. 3б ) незаполимеризовавшихся участков пластины раствором на форме образуется рельефное изображение. Вымывание основывается на том, что в процессе фотополимеризации печатающие элементы теряют способность растворяться в вымывном растворе. После вымывания требуется сушка фотополимерных форм. Во втором случае обработка осуществляется в термальном процессоре для обработки фотополимерных форм. Сухая термообработка полностью исключает использование традиционных химикалий и вымывных растворов, на 70% сокращает время получения форм, так как не требует их сушки.

После сушки (рис. 3в ) фотополимерная форма подвергается дополнительному экспонированию (рис. 3г ), повышающему степень фотополимеризации печатающих элементов.

После дополнительного экспонирования фотополимерные формы на основе ТФПК для флексографской печати имеют блестящую и слегка липкую поверхность. Липкость поверхности устраняется посредством дополнительной обработки (финишинга), в результате форма приобретает свойства стабильности и стойкости к различным растворителям печатных красок.

Финишинг может быть выполнен химически (с использованием хлорида и брома) или экспонированием ультрафиолетовым светом диапазона 250-260 нм, что оказывает на форму такое же действие. При химическом финишинге поверхность становится матовой, при ультрафиолетовом — блестящей.

Одним из важнейших параметров фотополимерных печатных форм является профиль печатающих элементов, который определяется углом при основании печатающего элемента и его крутизной. От профиля зависит разрешающая способность фотополимерных печатных форм, а также прочность сцепления печатающих элементов с подложкой, влияющая на тиражестойкость. Существенное влияние на профиль печатающих элементов оказывают режимы экспонирования и условия вымывания пробельных элементов. В зависимости от режима экспонирования печатающие элементы могут иметь различную форму.

При избыточном экспонировании образуется пологий профиль печатающих элементов, который обеспечивает их надежное закрепление на подложке, но является нежелательным из-за возможного уменьшения глубины пробелов.

При недостаточном экспонировании образуется грибообразный (бочкообразный) профиль, приводящий к неустойчивости печатающих элементов на подложке, вплоть до возможной потери отдельных элементов.

Оптимальный профиль имеет угол при основании 70±5º, что является наиболее предпочтительным, так как обеспечивает надежное сцепление печатающих элементов с подложкой и высокое разрешение изображения.

На профиль печатающих элементов также оказывает влияние соотношение экспозиций предварительного и основного экспонирования, длительность которых и их соотношение подбираются для различных типов и партий фотополимерных пластин для конкретных экспонирующих установок.

В настоящее время для изготовления фотополимерных печатных форм флексографской печати используются две технологии: «компьютер — фотоформа» и «компьютер — печатная форма».

Для технологии «компьютер — фотоформа» выпускаются так называемые аналоговые пластины, а для технологии «компьютер — печатная форма» — цифровые.

При изготовлении фотополимерных форм флексографской печати на основе ТФПК (рис. 4) выполняются следующие основные операции:

  • предварительное экспонирование оборотной стороны фотополимеризуемой флексографской формной пластины (аналоговой) в экспонирующей установке;
  • основное экспонирование монтажа фотоформы (негатива) и фотополимеризуемой пластины в экспонирующей установке;
  • обработка фотополимерной (флексографской) копии в сольвентном (вымывание) или термальном (сухая термообработка) процессоре;
  • сушка фотополимерной формы (сольвентно-вымывной) в сушильном устройстве;
  • дополнительное экспонирование фотополимерной формы в экспонирующей установке;
  • дополнительная обработка (финишинг) фотополимерной формы для устранения липкости ее поверхности.

Рис. 4. Схема процесса изготовления фотополимерных форм на основе ТФПК по технологии «компьютер — фотоформа»

Экспонирование оборотной стороны пластины является первым этапом изготовления формы. Оно представляет собой ровную засветку оборотной стороны пластины через полиэфирную основу без использования вакуума и негатива. Это важная технологическая операция, которая повышает светочувствительность полимера и образует основание рельефа необходимой высоты. Правильное экспонирование оборотной стороны пластины не оказывает влияния на печатающие элементы.

Основное экспонирование фотополимеризуемой пластины осуществляется методом контактного копирования с негативной фотоформы. На фотоформе, предназначенной для изготовления форм, текст должен быть зеркальным.

Фотоформы должны быть изготовлены на одном листе фотопленки, так как составные монтажи, склеенные липкой лентой, как правило, не обеспечивают надежного прилегания фотоформы к поверхности фотополимеризуемых слоев и могут вызвать искажение печатающих элементов.

Перед экспонированием фотоформу накладывают на фотополимеризуемую пластину эмульсионным слоем вниз. В противном случае между пластиной и изображением на фотоформе образуется зазор, равный толщине основы фотопленки. В результате преломления света в основе фотопленки может произойти сильное искажение печатающих элементов и закопировка растровых участков.

Для обеспечения плотного контакта фотоформы с фотополимеризуемым материалом фотопленку матируют. Микронеровности на поверхности фотоформы позволяют полностью быстро удалить из-под нее воздух, что создает плотный контакт фотоформы с поверхностью фотополимеризуемой пластины. Для этого используют специальные порошки, которые наносят ватно-марлевым тампоном легкими круговыми движениями.

В результате обработки фотополимерных копий на основе сольвентно-вымывных формных пластин вымывается не подвергнутый экспонированию и полимеризации мономер — он растворяется и смывается с пластины. Остаются только участки, прошедшие полимеризацию и образующие рельеф изображения.

Недостаточное время вымывания, пониженная температура, ненадлежащее давление щеток (низкое давление — щетина не касается поверхности пластины; высокое давление — щетина выгибается, уменьшается время вымывания), пониженный уровень раствора в вымывном резервуаре приводят к слишком мелкому рельефу.

Избыточное время вымывания, повышенная температура и недостаточная концентрация раствора приводят к слишком глубокому рельефу. Правильное время вымывания определяется экспериментально в зависимости от толщины пластины.

При вымывании пластина пропитывается раствором. Полимеризованный рельеф изображения набухает и размягчается. После удаления с поверхности вымывного раствора неткаными салфетками или специальным полотенцем пластину нужно просушить в сушильной секции при температуре не выше 60 °С. При температуре, превышающей 60 °С, могут появляться сложности в приводке, поскольку полиэфирная основа, которая при нормальных условиях сохраняет стабильные размеры, начинает сжиматься.

Набухание пластин при вымывании приводит к увеличению толщины пластин, которые даже после сушки в сушильном устройстве сразу не возвращаются к своей нормальной толщине и должны находиться еще 12 ч на открытом воздухе.

При использовании термочувствительных фотополимеризуемых пластин проявление рельефного изображения происходит путем плавления незаполимеризованных участков форм при их обработке в термальном процессоре. Расплавленная фотополимеризуемая композиция адсорбируется, впитывается и снимается специальной тканью, которая после этого направляется на утилизацию. Такой технологический процесс не требует применения растворителей, а следовательно, исключается сушка проявленных форм. Таким способом можно изготавливать как аналоговые, так и цифровые формы. Основным достоинством технологии с применением термочувствительных пластин является значительное снижение времени изготовления формы, что обусловлено отсутствием этапа сушки.

Для придания тиражестойкости пластину помещают в экспонирующую установку для дополнительного освещения УФ-лампами в течение 4-8 мин.

Чтобы ликвидировать липкость пластины после сушки, ее надо обработать УФ-излучением с длиной волны 250-260 нм или химически.

Аналоговые сольвентно-вымывные и термочувствительные фотополимеризуемые флексографские пластины имеют разрешающую способность, которая обеспечивает получение 2-95-процентных растровых точек при линиатуре растра 150 lpi, и тиражестойкость до 1 млн оттисков.

Одной из особенностей процесса изготовления плоских фотополимерных форм флексографской печати по технологии «компьютер — фотоформа» является необходимость учета степени растяжения формы вдоль окружности формного цилиндра при установке ее в печатной машине. Растяжение рельефа поверхности формы (рис. 5) приводит к удлинению изображения на оттиске по сравнению с изображением на фотоформе. При этом чем толще растягивающийся слой, расположенный на подложке или стабилизирующей пленке (при использовании многослойных пластин), тем длиннее изображение.

Толщина фотополимерных форм варьируется в пределах от 0,2 до 7 мм и выше. В связи с этим необходимо осуществлять компенсацию удлинения посредством уменьшения масштаба изображения на фотоформе по одной из ее сторон, ориентированной по направлению движения бумажного полотна (ленты) в печатной машине.

Для расчета величины масштаба М фотоформы можно воспользоваться константой растяжения k , которая для каждого типа пластин равна k = 2 h c (h c — толщина рельефного слоя).

Длина оттиска L отт соответствует расстоянию, которое проходит определенная точка, находящаяся на поверхности формы, при полном обороте формного цилиндра, и вычисляется следующим образом:

где D фц — диаметр формного цилиндра, мм; h ф — толщина печатной формы, мм; h л — толщина липкой ленты, мм.

На основе рассчитанной длины оттиска определяется необходимое укорачивание фотоформы Δd (в процентах) по формуле

.

Итак, изображение на фотоформе в одном из направлений должно быть получено с масштабом, равным

.

Такое масштабирование изображения на фотоформе может быть выполнено при компьютерной обработке цифрового файла, содержащего информацию о спуске полос или отдельных полосах издания.

Изготовление фотополимерных флексографских печатных форм по технологии «компьютер — печатная форма» основано на применении лазерных методов обработки формных материалов: абляции (разрушения и удаления) масочного слоя с поверхности формной пластины и прямого гравирования формного материала.

Рис. 5. Растяжение поверхности печатной формы при установке на формном цилиндре: а — печатная форма; б — печатная форма на формном цилиндре

В случае применения лазерной абляции последующее удаление незаполимеризованного слоя может производиться с помощью сольвентного или термального процессора. Для данного способа используются специальные (цифровые) пластины, которые отличаются от традиционных лишь наличием масочного слоя толщиной 3-5 мкм на поверхности пластины. Масочный слой представляет собой сажевый наполнитель в растворе олигомера, нечувствительный к УФ-излучению и термочувствительный к инфракрасному диапазону спектра. Этот слой служит для создания первичного изображения, формируемого с помощью лазера, и является негативной маской.

Негативное изображение (маска) необходимо для последующего экспонирования УФ-источником света формной фотополимеризуемой пластины. В результате дальнейшей химической обработки на поверхности создается рельефное изображение печатающих элементов.

На рис. 6 показана последовательность операций изготовления флексографской формы на пластине, содержащей масочный слой 1 , слой фотополимера 2 и подложку 3 . После удаления лазером масочного слоя в местах, соответствующих печатающим элементам, экспонируется прозрачная подложка с целью создания фотополимерной подложки. Экспонирование для получения рельефного изображения осуществляется через созданное из масочного слоя негативное изображение. Затем проводится обычная обработка, состоящая из вымывания незаполимеризованного фотополимера, промывки, доэкспонирования с одновременной сушкой и световым финишингом.

При записи изображения с помощью лазерных систем размер точки на маскированных фотополимерах равен, как правило, 15-25 мкм, что позволяет получать на форме изображения с линиатурой 180 lpi и выше.

При изготовлении фотополимерных форм в технологии «компьютер — печатная форма» используются пластины на основе твердых фотополимерных композиций, обеспечивающих высокое качество печатных форм, дальнейшая обработка которых происходит так же, как аналоговых флексографских фотополимерных форм.

На рис. 7 представлена классификация фотополимеризуемых пластин для флексографской печати на основе твердых фотополимерных композиций.

В зависимости от структуры формной пластины выделяют однослойные и многослойные пластины.

Однослойные пластины состоят из фотополимеризуемого (рельефообразующего) слоя, который находится между защитной фольгой и лавсановой основой, служащей для стабилизации пластины.

Многослойные пластины, предназначенные для качественной растровой печати, состоят из относительно твердых тонкослойных пластин со сжимаемой основой. На обеих поверхностях пластины находится защитная фольга, а между фотополимеризуемым слоем и основой расположен стабилизирующий слой, который обеспечивает почти полное отсутствие продольной деформации при изгибе печатной формы.

В зависимости от толщины фотополимеризуемые пластины делятся на толстослойные и тонкослойные.

Тонкослойные пластины (толщиной 0,76-2,84 мм) имеют высокую твердость, для того чтобы уменьшить растискивание в процессе печатания. Поэтому печатные формы, изготовленные на таких пластинах, обеспечивают высокое качество готовой продукции и используются для запечатывания гибкой упаковки, пластиковых пакетов, этикеток и ярлыков.

Толстослойные пластины (толщиной 2,84-6,35 мм) мягче тонкослойных и обеспечивают более плотный контакт с неровной запечатываемой поверхностью. Печатные формы на их основе применяются для запечатывания гофрокартона и бумажных мешков.

В последнее время при печатании на материалах типа гофрокартона чаще применяют пластины толщиной 2,84-3,94 мм. Это объясняется тем, что при использовании более «толстых» фотополимерных форм (3,94-6,35 мм) сложно получить высоколиниатурное многокрасочное изображение.

В зависимости от твердости выделяют пластины высокой, средней и малой твердости.

Пластины высокой твердости характеризуются меньшим растискиванием растровых элементов и применяются для печатания высоколиниатурных работ. Пластины средней жесткости позволяют одинаково хорошо печатать растровые, штриховые и плашечные работы. Более мягкие фотополимеризуемые пластины используются для печатания плашечных работ.

В зависимости от способа обработки фотополимерных копий пластины можно разделить на три типа: водорастворимые, спирторастворимые и пластины, обрабатываемые по термальной технологии. Для обработки пластин, принадлежащих к разным типам, необходимо применять разные процессоры.

Способом лазерной абляции масочного слоя фотополимеризуемых формных материалов изготавливают как плоские, так и цилиндрические печатные формы.

Цилиндрические (гильзовые) флексографские формы могут быть трубчатыми, надеваемыми на формный цилиндр с его торца, или представлять собой поверхность съемного формного цилиндра, устанавливаемого в печатную машину.

Процесс изготовления плоских флексографских печатных форм на основе сольвентно-вымывных или термочувствительных цифровых фотополимеризуемых пластин с масочным слоем по технологии «компьютер — печатная форма» (рис. 8) включает следующие операции:

  • предварительное экспонирование оборотной стороны фотополимеризуемой флексографской формной пластины (цифровой) в экспонирующей установке;
  • передача цифрового файла, содержащего данные о цветоделенных изображениях полос или полноформатного печатного листа, в растровый процессор (РИП);
  • обработка цифрового файла в РИП (прием, интерпретация данных, растрирование изображения с заданной линиатурой и типом растра);
  • запись изображения на масочном слое формной пластины путем его абляции в формовыводном устройстве;
  • основное экспонирование фотополимеризуемого слоя формной пластины через масочный слой в экспонирующей установке;
  • обработка (вымывание для сольвентно-вымывных или сухая термообработка для термочувствительных пластин) флексографской копии в процессоре (сольвентном или термальном);
  • сушка фотополимерной формы (для сольвентно-вымывных пластин) в сушильном устройстве;
  • дополнительная обработка фотополимерной формы (световой финишинг);
  • дополнительное экспонирование фотополимерной формы в экспонирующей установке.

Процесс изготовления гильзовых фотополимерных флексографских печатных форм методом абляции (рис. 9) отличается от процесса изготовления плоских форм в основном отсутствием операции предварительного экспонирования оборотной стороны формного материала.

Применение метода абляции масочного слоя при изготовлении фотополимерных флексографских форм не только сокращает технологический цикл ввиду отсутствия фотоформ, но и позволяет исключить те причины снижения качества, которые прямо связаны с использованием негативов при производстве традиционных печатных форм:

  • отсутствуют проблемы, возникающие вследствие неплотного прижима фотоформ в вакуумной камере и образования пузырей при экспонировании фотополимерных пластин;
  • нет потерь качества форм вследствие попадания пыли или других включений;
  • не происходит искажения формы печатающих элементов из-за низкой оптической плотности фотоформ и так называемой мягкой точки;
  • нет необходимости работать с вакуумом;
  • профиль печатающего элемента оптимален для стабилизации растискивания и точной цветопередачи.

При экспонировании монтажа, состоящего из фотоформы и фотополимерной пластины, в традиционной технологии свет, прежде чем достичь фотополимера, проходит через несколько слоев: серебряную эмульсию, матированный слой и основу пленки, а также стекло вакуумной копировальной рамы. При этом свет рассеивается в каждом слое и на границах слоев. В результате растровые точки получают более широкие основания, что приводит к увеличению растискивания. В отличие от этого при экспонировании лазером маскированных флексографских пластин нет необходимости создавать вакуум и отсутствует пленка. Практически полное отсутствие рассеяния света означает, что изображение с высоким разрешением на слое-маске точно воспроизводится на фотополимере.

При изготовлении флексографских форм по цифровой технологии абляции масочного слоя необходимо иметь в виду, что сформированные печатающие элементы, в отличие от экспонирования через фотоформу в традиционной (аналоговой) технологии, оказываются несколько меньше по площади, чем их изображение на маске. Это объясняется тем, что экспонирование протекает в воздушной среде и вследствие контакта ФПС с кислородом воздуха происходит ингибирование (задерживание) процесса полимеризации, вызывающее уменьшение размеров формирующихся печатающих элементов (рис. 10).

Рис. 10. Сравнение печатающих элементов фотополимерных форм: а — аналоговых; б — цифровых

Результатом воздействия кислорода является не только некоторое уменьшение размеров печатающих элементов, что в большей мере сказывается на мелких растровых точках, но и снижение их высоты относительно высоты плашки. При этом чем меньше растровая точка, тем меньше высота рельефного печатающего элемента.

На форме, изготовленной по аналоговой технологии, печатающие элементы растровых точек, наоборот, превышают по высоте плашку. Таким образом, печатающие элементы на форме, изготовленной по цифровой масочной технологии, отличаются по размерам и высоте от печатающих элементов, сформированных по аналоговой технологии.

Отличаются и профили печатающих элементов. Так, печатающие элементы на формах, изготовленных по цифровой технологии, имеют более крутые боковые грани, чем печатающие элементы форм, полученных по аналоговой технологии.

Технология прямого лазерного гравирования включает только одну операцию. Процесс изготовления формы сводится к следующему: пластину без всякой предварительной обработки устанавливают на цилиндр для гравирования лазером. Лазер формирует печатающие элементы, удаляя материал с пробельных, то есть происходит выжигание пробельных элементов (рис. 11).

Рис. 11. Схема прямого лазерного гравирования: D и f — апертура и фокусное расстояние линзы; q — расходимость луча

После гравирования форма не требует обработки вымывными растворами и УФ-излучением. Форма будет готова к печати после промывки водой и короткой сушки. Частицы пыли также можно удалить, протерев форму влажной мягкой тканью.

На рис. 12 представлена структурная схема технологического процесса изготовления фотополимерных флексографских печатных форм по технологии прямого лазерного гравирования.

Первые гравировальные установки использовали инфракрасный мощный ND:YAG-лазер на иттрий-алюминиевом гранате с неодимом с длиной волны 1064 нм для гравирования на гильзе из резины. Позднее стали применять CO2-лазер, который за счет высокой мощности (до 250 Вт) имеет бо льшую производительность, а благодаря своей длине волны (10,6 мкм) позволяет гравировать более широкий спектр материалов.

Недостатком СО2-лазеров является то, что они не обеспечивают запись изображения с линиатурами 133-160 lpi, необходимыми для современного уровня флексографской печати, из-за большой расходимости луча q . Для таких линиатур запись изображения следует производить с разрешением 2128-2580 dpi, то есть размер элементарной точки изображения должен быть приблизительно 10-12 мкм.

Диаметр пятна сфокусированного лазерного излучения должен определенным образом соответствовать вычисленному размеру точки изображения. Известно, что при правильной организации процесса лазерного гравирования пятно лазерного излучения должно быть гораздо больше теоретического размера точки — тогда между смежными строками записанного изображения не остается необработанного материала.

Увеличение пятна в 1,5 раза дает оптимальный диаметр элементарной точки изображения: d 0 = 15-20 мкм.

В общем случае диаметр пятна излучения СО2-лазера составляет около 50 мкм. Поэтому печатные формы, полученные прямым гравированием СО2-лазером, главным образом применяются для печатания обоев, упаковки с несложными рисунками, тетрадей, то есть там, где не требуется высоколиниатурная растровая печать.

В последнее время появились разработки, позволяющие повысить разрешение записи изображения путем прямого лазерного гравирования. Это можно осуществить за счет умелого использования перекрывающихся записывающих точек лазера, которые позволяют получать на форме элементы меньше диаметра пятна (рис. 13).

Рис. 13. Получение мелких деталей на форме при помощи перекрывающихся пятен лазера

Для этого лазерные гравировальные устройства модифицируют таким образом, чтобы можно было перестроиться с одного луча на работу несколькими лучами (до трех), которые ввиду различной мощности гравируют материал на разную глубину и таким образом обеспечивают лучшее формирование склонов растровых точек. Еще одной инновацией в этой области является комбинация СО2-лазера для предварительного формирования рельефа, особенно глубоких участков, с твердотельным лазером, который из-за гораздо меньшего диаметра пятна может сформировать склоны печатающих элементов заранее определенной формы. Ограничения здесь заданы самим формным материалом, поскольку излучение лазера Nd:YAG поглощается не всеми материалами, в отличие от излучения СО2-лазера. 

Загрузка...